
    Advanced search 

Linux Journal Issue #62/June 1999

Focus

Standards  by Marjorie Richardson

Features

The Past and Future of Linux Standards  by Daniel Quinlan
The nice thing about standards is that there are so many of
them to choose from. --Professor Andrew S. Tanebaum (author of
MINIX).

The Distributions Take a Stand on Standards  by Norman M.
Jacobowitz

Mr. Jacobowitz talks about standards with representatives of the
various distributions by e-mail and at the LinuxWorld Expo.

Reviews

WordPerfect 8 for Linux  by Michael Scott Shappe
Metro Link Motif Complete!  by Liam Greenwood
TclPro v1.1  by Daniel Lazenby
The Linux Network  by Duane Hellums
Developing Imaging Applications with XIElib  by Michael J. Hammel

Forum

Minivend—the Electronic Shopping Cart  by Kaare Rasmussen
If you need a catalog system for your web page, this product
may be just what you are looking for.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/062/3452.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3417.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3433.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3046.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3211.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3304.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3316.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3160.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3301.html


Introduction to Sybase, Part 1: Setting Up the Server  by Jay Sissom
Sybase comes to Linux—here's how it works.

CORBA Program Development, Part 2  by J. Mark Shacklette and Jeff
Illian

This month, the more advanced techniques of naming and event
services are discussed.

Stephen Wockner of the TAB of Queensland  by Bob Hepple
A mission-critical application for 580 Linux computers.

Linux Clusters at NIST  by Wayne J. Salamon and Alan Mink
NIST is using Linux clusters for research, benchmarking them
against supercomputers.

Columns

At the Forge   Sending Mail via the Web, Part 2  by Reuven M.
Lerner

Sending Mail via the Web, Part 2 Mr. Lerner continues his look at
building a simple, integrated mail system that can be accessed
using a web browser.

Focus on Software  by David A. Bandel
Linux Means Business   Making Money in the Bazaar  by Bernie
Thompson

Making Money in the Bazaar A look at the business models in
use today and how they work.

Kernel Korner   IP Bandwidth Management  by Jamal Hadi Salim
IP Bandwidth Management A look at the new traffic control code
in the kernel and how it aids in bandwidth management.

System Administration   Root File System on RAID  by Martin
Schulze

Root File System on RAID What should you do if it is
unacceptable to use a single disk or partition for the root file
system? Use two or three. This article provides a solution for this
problem.

Take Command   The awk Utility  by Louis J. Iacona
The awk Utility This column presents an introduction to the
Linux data manipulation tool called awk.

Departments

Letters  by Marjorie Richardson
More Letters to the Editor

linux.com  by Marjorie Richardson
The Other Shoe  by Doc Searls
New Products  
Best of Technical Support  

Strictly On-line

Pro-Lite Scrolling Message Signs  by Walter Stoneburner
A review of the Pro-Lite Tru-Color II PL-M2014R, an affordable
multi-color LED scrolling message board that is capable of being
controlled by a standard RS-232 serial port.

PPR: PostScript Printer Spooling  by Olivier Tharan

https://secure2.linuxjournal.com/ljarchive/LJ/062/3203.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3213.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3226.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3449.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3416.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3318.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3369.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3205.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/2533.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3451.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/lte62more.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3365.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3366.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3454.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3453.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/2823.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/2855.html


Mr. Tharan tells us how to use the PPR spooler for large
networks.

Linux in Schools  by Rob Bellville
How a K-12 school system is using Linux to supply a myriad of
stable network services to its students and staff.

Linux for Enterprise-Resource Planning  by Uche Ogbuji
Mr. Ogbuji takes a look at enterprise resource planning and
Linux's place in this market.

Linux Web Server Toolkit  by Keith P. de Solla
A review of the LINUX Web Server Toolkit, a book that takes the
reader completely through the procedure of building a web
server.

Archive Index 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/062/2955.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3178.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3289.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Focus: Standards

Marjorie Richardson

Issue #62, June 1999

This month, we look at the Linux standardization efforts. 

Standards—a fairly innocuous word that seems to create a storm of
controversy whenever it is spoken. Everyone agrees it is a good thing, but no
one agrees on what standards should encompass or how they should be
enforced. Whether for auto parts or operating systems, standardization can be
a big plus for the consumer. 

The Linux operating system, unlike other software products, has multiple
sources—each distribution represents a different implementation. The
differences are generally in the installation software and methods (RPM vs. DEB
packages, for example); however, nothing is currently in place to prevent a
company from adding a feature to the operating system and still call it Linux.
Other companies are free to adopt the feature, but this is not required.

This month, we look at the Linux standardization efforts. Two things are very
clear in the standards debate:

• Distributions want to remain unique in order to maintain marketplace
advantage.

• Users and manufacturers of applications software (ISVs) want applications
that will run on whichever distribution they own, i.e., they want
applications to run on all distributions.

These two things are not mutually exclusive. After all, users do not want one
distribution to become the Linux “Microsoft” (it might be one other than their
favorite), so users too are all for uniqueness in distributions. And no
distribution wants to be the odd man out—the distribution on which a major
application doesn't work; so, the distributions also are for compatibility.
Developers more than anyone want standards that will enable them to write

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


programs that will work across all distributions without hassle. Thus, it appears
as if all sides have a common ground on which to meet. 

Setting and following standards is the only way to ever ensure cross-
distribution compatibility for applications. However, standards that are defined
in a rigid and finely detailed manner will be ignored by developers as unrealistic
and difficult to follow. Finding that optimum position between standards that
are too lax and those that are too rigid is the laudable goal of the Linux
Standards Base Project. Dan Quinlan, the project leader, tells us about the
plans of the LSB in his article in this issue.

To find out where all the distributions stand on this issue, Norman Jacobowitz
talked to representatives of each by e-mail and at the LinuxWorld Expo. Some
were more forthcoming than others; see who said what in Norman's article this
month.

Want to express your opinions? Join the discussion groups on Linux Journal
Interactive, http://interactive.linuxjournal.com/.

—Marjorie Richardson, Editor in Chief

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

The Past and Future of Linux Standards

Daniel Quinlan

Issue #62, June 1999

“The nice thing about standards is that there are so many of them to choose
from.” --Professor Andrew S. Tanebaum (author of MINIX). 

Despite their well-earned reputation as a source of confusion, standards are
one of the enabling factors behind the success of Linux. If it were not for the
adoption of the right standards by Linus Torvalds and other developers, Linux
would likely be a small footnote in the history of operating systems. 

The Early Days

Some people believe the interest in Linux standards is very recent, precipitated
by the upswing in commercial interest. However, before Linux was even
named, conformance to an open standard was an important goal. Here is one
of the first postings by Linus Torvalds about a project that would soon be
named Linux:

From: torvalds@klaava.Helsinki.FI
        (Linus Benedict Torvalds)
Newsgroups: comp.os.minix
Subject: Gcc-1.40 and a POSIX-question
Date: 3 Jul 91 10:00:50 GMT
Due to a project I'm working on (in minix),
I'm interested in the POSIX standard definition.
Could somebody please point me to a (preferably)
machine-readable format of the latest POSIX rules?
FTP sites would be nice.

A month later, Linus posted: 

As to POSIX, I'd be delighted to have it,
but POSIX wants money for their papers, so that's
not currently an option.

Despite the high cost of a copy of the POSIX standard in 1991, it became one of
the primary standards for Linux. POSIX, the Portable Operating System
Interface, is a standard application programming interface (API) used by Linux
and many other operating systems (typically UNIX and UNIX-like systems).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


There are several major benefits to using the interface defined by POSIX. It
makes it easier to write source code that can be compiled on different POSIX
systems. It also gives Linux application developers and Linux kernel developers
a well-defined API to share. That means application developers don't need to
track most kernel changes as long as the kernel continues to behave as POSIX
says it should. 

In addition, using POSIX as the API for Linux enabled Linus and other early
Linux developers to use existing free programs written by the GNU Project, the
BSD operating system and many other free programs which adhere to the
POSIX specification.

It is important to note that POSIX does not provide for precompiled binary
applications to be run on any POSIX operating system. Since it provides source
code compatibility, but not binary compatibility, POSIX is often thought of as a 
source standard. Early development of Linux was made under the Minix
operating system. In fact, Linus originally wanted to make Linux binary-
compatible with Minix. That idea was dropped when the differences between
Linux and Minix became too great, but some traces of the Minix heritage of
Linux still linger here and there.

When asked about the importance of POSIX in early Linux development, Linus
Torvalds said, “Linux started out very aware of POSIX, but even more so of the
unofficial de facto standards.” He elaborated that, at the time, these de facto
standards were approximately SunOS (the precursor to Solaris) behavior,
somewhere between BSD and System V. “Basically, I wanted to not have to
spend too much time porting user mode programs (it wasn't something I was
all that interested in), and POSIX helped in that,” Torvalds said.

Linux Today

POSIX.1 (the POSIX kernel interface) is still considered by Linus Torvalds and
other kernel developers to be the “base standard” for the kernel. Some later
additions to the POSIX specification have not been as useful as POSIX.1, and
design issues often have to be resolved before Linux can make use of a
standard. Linus describes one of the best examples of such a design decision:

Often there are standards that are too generic to be
very useful as a guide for the kernel. The “pthreads”
POSIX threads standard is one example: some people
have tried to implement their kernel threading model
according to it, and the standard simply is not very well
suited to that.

Even in that case, I still wanted to support the
standard; I just did not want to natively implement the



standard as-is. So Linux clone was created: the
infrastructure to do threading under Linux, on top of
which you can implement pthreads and also other
threading models.

It is difficult to list all of the other standards used today by Linux. TCP/IP,
Ethernet and other formal and de facto standards form the basis for
networking in Linux. The IBM PC is one of the best examples of a de facto
standard. (This standard is now more formalized.) The PC allowed thousands,
and then millions, of people to run Linux on a system typically used for
Microsoft Windows. It is a lot easier to take over the world if you run on the
standard hardware of the day. Just as significant, the GNU C compiler (without
which there would be no Linux) is built on top of the K&R (Kernigan & Ritchie)
and ANSI C standards. 

Common Implementation

In addition to formal standards like POSIX and ANSI C, one of the most
prevalent types of standards used by Linux systems is a common
implementation. The best example, of course, is the Linux kernel. No written
specification is available for many of the interfaces provided by the kernel.
However, no specification is needed because only one strain of kernel is
accepted by everyone (not just all distributions or all developers, but truly 
everyone). Want to know the standard? Read the kernel source.

While not always quite as clear-cut, many more examples of common
implementation standards are accepted by the entire Linux community, or at
least a large chunk of it. Take the utilities and programs provided by the GNU
Project. For example, it has long been accepted that the utility find is the
enhanced GNU version, not the BSD one or some other version. If you are
writing an application for Linux only, it is probably safe to rely on most of the
functionality provided by GNU find. Because so many GNU utilities like this are
used, Richard Stallman, founder of the GNU Project, insists that people refer to
Linux as “GNU/Linux” or as a “Linux-based GNU system”. This tends to upset
many people, but most developers seem to recognize Stallman's immense
contribution and don't make a big fuss about it, even if most of them still say
“Linux”.

The GNU project's share in the success of Linux does not end there. Linux has
now standardized on the GNU C library (glibc) as the common implementation
for future Linux systems. The glibc project aims for compliance with several
standards. According to Ulrich Drepper, the GNU libc maintainer, all of the
important standards are supported as long as they don't conflict with common
sense. That list includes ISO C 90, ISO C 9x, POSIX and UNIX 98.



Filesystem Hierarchy Standard

What if there is not a common implementation, a formal standard, or even an
informal, de facto or ad hoc standard? One thing you can do is try to pick the
best and most common practices and base a standard on them.

The Filesystem Hierarchy Standard (FHS) was among the first written standards
developed specifically for Linux. The FHS aims to standardize the locations
where files and directories are placed in the system. Standard locations are
needed so that applications can be compiled and run well on different Linux
distributions; it is also helpful for developers. If you want to write
documentation for Linux, or if you need to work on more than one variety of
Linux, it is invaluable knowing you can expect to find important files and
directories in a standard location.

If you are wondering why a standard such as POSIX could not be adopted, the
reason is one did not exist. Each UNIX vendor had its own solution, and there
was a great deal of overlap, but the specifications and rationale for each
vendor's layout were either lacking or nonexistent. Unfortunately, no multi-
vendor standard was available for a standard layout of files and directories.

The FHS was started in 1993. At the time, the Linux OS was approximately two
years old. As he does today, Linus dictated how things would work in the Linux
kernel and did not exert much influence on other areas of the Linux operating
system. With no central authority for those other areas, a number of Linux
distributions had considerably different layouts. Some were like the BSD
operating system, others were more like SunOS, and others were different still.
(Incidentally, most of the names of the big distributions back then were
different from the ones we hear today: Debian, Linux/PRO, MCC, Slackware,
SLS, TAMU, Yggdrasil, etc.)

The first version of the FHS was based on ideas from SunOS 4, SVR4, 4.3BSD,
4.4BSD, SunOS 4, HP-UX and many other UNIX systems, but it was also based
as much as possible on common practices distilled from the various Linux
distributions existing at the time. The completed specification attempted to
take the best of each file-system layout and combine them into a solution that
worked well.

Since then, subsequent releases of the FHS have been refinements of the
original specification, importing a few additional ideas from other areas
(including 4.4BSD and SVR4).

Today, most Linux distributions follow FSSTND 1.2 (the precursor to FHS 2.0).
They do this not because they are forced to, but because it cleanly addresses a



problem they were having. FHS 2.1 should be available by the time this article is
published.

Linux Standard Base

The widespread availability of third-party commercial software for Linux is a
relatively new phenomenon. Many vendors are faced with a problem they have
never seen before.

At one time, all the software on your Linux box generally came from one of two
places. Either it came with the distribution, or someone (you, a friend, maybe
even a system administrator) compiled it from the source and installed it
locally. Distributions are very good at integrating software and making sure
everything works together. Assuming someone had the expertise, it is possible
to get even a sub-standard program compiled and installed for your Linux
boxes.

What if someone else wants to give you a pre-compiled binary package to
install on your system? They are forced to consider which distribution you run,
what version of the distribution, your kernel version, and a slew of other
considerations before they can be reasonably certain that the application will
install correctly on your system and work. If the goal is to provide a binary
package for everyone, it is even worse. You must tailor the application for any
and all distributions, and then compile, build and test it on each one, too. Is it
any surprise that few vendors support even three or four of the major Linux
distributions for their applications?

One of the more common fears about Linux is that fragmentation will occur
because it uses an open-development model. As in real life, fragmentation
occurs when something breaks into many different pieces which are no longer
connected. Fragmentation is not a new phenomenon in the free-software
community. Sometimes it happens for good reasons, perhaps when a
maintainer is not doing a good job. Sometimes it happens for less worthy
reasons, such as a personality conflict between lead developers.

This has happened before. A graphical-oriented version of the GNU Emacs
editor called XEmacs split off of the version maintained by the Free Software
Foundation (FSF) because of technical differences between the FSF and the
developers of Lucid Emacs (the predecessor to XEmacs). The XEmacs FAQ does
not take a rosy view of the situation:

There are currently irreconcilable differences in the
views about technical, programming, design and
organizational matters between RMS [Richard
Stallman] and the XEmacs development team which



provide little hope for a merge to take place in the
short-term future.

If you have a comment to add regarding the merge, it
is a good idea to avoid posting to the newsgroups,
because of the very heated flame wars that often
result.

When there is a split like this, it usually has the most impact on the end user.
Add-on packages work with one variety of the software, but might not work
with another. That is more or less what happened to GNU Emacs, although
developers try to compensate for it as best they can. 

A small amount of fragmentation, such as the difference between Linux
distributions, is good because it allows them to cater to different segments of
the community. Because Linux is Open Source, different distributions have the
freedom to be unique. For example, the Extreme Linux distribution targets
high-performance clusters of Linux PCs running the Beowulf clustering
software. Rather than a single all-in-one distribution, each distribution can
target a segment of the Linux community and try to meet that segment's needs
better than any other distribution. Users benefit by getting a Linux distribution
that more closely meets their needs than is possible under a single distribution
model.

Also important is the attitude about fragmentation in the Linux community.
Everyone is concerned that fragmentation could become a problem, and wants
to ensure that applications can run on any variety of Linux. That is where the
Linux Standard Base (LSB) is involved. The LSB project is working to define a
common subset of Linux that everyone can count on, independent of the
distribution. By defining only what can be expected in a minimal base Linux
system, the LSB is attempting to find a balance between stifling Linux
development and the possibility of Linux fragmenting into several totally
incompatible versions.

The main problem the LSB is addressing is that software vendors must port
and test their software on multiple Linux distributions, because even a small
difference between distributions can result in major problems for the software
when the vendor's software has been based on the behavior of one
distribution. The difficulties ultimately affect everyone: users, developers,
application vendors, Linux companies, et al.

Aside from the danger of fragmentation (which, by the way, Linux has avoided
for the last eight years without an LSB), there are secondary dangers, namely
FUD—fear, uncertainty, and doubt. The LSB hopes that by making
fragmentation a remote possibility, it will help bolster confidence and win



support for Linux from even the most conservative sectors. How will it do that?
The Linux Standard Base Goals are as follows:

• Enable software applications to run on any LSB-compliant distribution.
• Increase compatibility among Linux distributions.
• Help support software vendors and developers to port and write software

for Linux.

Those are the things the LSB developers want to do. On the other hand, we
want to avoid some things. Our LSB Guidelines for Success include: 

• Don't tread on distributions—everyone wants them to be unique.
• Do no more than what is required to solve the basic problem of

application portability.
• Don't break old systems or prevent future advances.

LSB intends to generate a written specification for what distributions should
provide and what application vendors can expect in a base system, and provide
a test suite and sample implementation of the base system. 

Linux and Future Standards

Is it enough for Linux developers to make their own way based on standards
developed by outside groups such as the IEEE, The Open Group, ISO and ANSI?
Probably not. Linux developers have been able to pick and choose which
standards to adopt and how to implement them, but as standards are revised
and extended, Linux developers want to ensure future standards also meet
their needs.

One such revision in progress is a joint revision of the POSIX standards by the
IEEE, The Open Group and ISO. The group revising the standard is known as the
Austin Group. Unlike previous POSIX standards, the goal is a common set of
documents shared by all three organizations. USENIX, the Advanced Computing
Systems Association, is helping to fund two Linux developers to attend
meetings and participate in the revision. The two developers are Ulrich
Drepper, the glibc maintainer, and H. Peter Anvin, author of the kernel
automounter and maintainer of the Linux device list. The POSIX revision, Ulrich
says, will throw away or at least make optional some of the less wanted parts of
the old standards (such as STREAMS). This is a good thing for Linux because
those parts have not been adopted by the entire Linux community. The result is
that fuller compliance with POSIX will become more likely.

In addition, Ulrich adds, there are functions he would like to see standardized
in the new POSIX specification. Some of those function specifications may come



directly from the glibc project. If that happens, maybe some future operating
system can put some of the standardization blame on Linux.

Resources

Daniel Quinlan (quinlan@transmeta.com) is the chair (i.e., project leader) of the
LSB, the editor of the Filesystem Hierarchy Standard and a member of the
Linux International technical board. He is employed as a System Administrator
at Transmeta Corporation. Outside work, he is currently getting into indoor
rock climbing.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/062/3417s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

The Distributions Take a Stand on Standards

Norman M. Jacobowitz

Issue #62, June 1999

Mr. Jacobowitz talks about standards with representatives of the various
distributions by e-mail and at the LinuxWorld Expo. 

With all of the recent debate about standardization and the future of Linux
standards, it's natural to wonder where the major Linux distributions and other
key industry players stand on the subject. So, to find out, Linux Journal posed
the following question: “What stance does your organization take on the
subject of Linux standards and the growing standardization issue?” We received
some very interesting responses with quite a variation in length from the major
vendors. Here they are, in no particular order. 

Red Hat Software, Donnie Barnes

We at Red Hat are generally in favor of good standards that speak to existing as
well as future problems. History has shown that adherence to standards can be
very important and failing to do so can cause fragmentation that leads to a very
unhealthy situation for all players involved. We do our best to make sure we
adhere to useful standards such as the FHS (Filesystem Hierarchy Standard).

New standards for Linux are evolving, and we are working hard to be a part of
that evolution. Standards are very important in maintaining compatibility
across all Linux distributions. Compatibility is important to keep independent
software vendors (ISVs) from seeing Linux as a fragmented mess that can't be
supported. ISVs are important because they bring the applications to Linux.
Applications are important because they bring users to Linux. As you can see,
it's a trickle-down effect that has large implications.

That said, we are working hard to make sure the evolving standards are good
ones. Bad standards can also be very harmful. So far, the Linux community has
been very good at working out good standards. With a responsible community
effort from all players, I fully believe the Linux community can maintain that

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


trend. If so, you can expect Red Hat to participate fully with the standards that
are created.

Caldera Systems, Ransom Love

Thank you for the opportunity to respond on Caldera Systems' feelings about
Linux Standard Base (LSB). Everyone probably has a slightly different definition
of what they think LSB is and what it should be. I will take the liberty of telling
you what I think it should be. LSB's main objective should be to solve the
problem facing commercial ISVs. LSB should be an effort that would enable
commercial software developers to port once and have their applications run
on all major Linux distributions. If it does not solve this problem, Linux will have
a major problem in the not too distant future. Nearly every ISV we have spoken
to wants to remain “distribution agnostic”, but they do not want to support four
or more versions to accommodate Linux. The current answer seems to be one
of three options: publish the source code to the application and allow the
community to support the different versions, pick a kernel version and a library
version and allow the Linux providers to offer patches, or just pick one of the
distributions to support.

I will address the problems with all three of these ideas. First, publish the
source code to the application. This will work in some cases but not in the
majority. Some of these industry players have millions if not billions of dollars
tied up in proprietary software and hardware that will not allow them to
publish their solutions. They do and will continue to support Linux and the
open-source effort, but their board of directors, attorneys and stockholders will
not allow them to publish source code at this time and may never allow it.
Publishing the source opens up significant liabilities. Netscape published the
browser source only to outsource it to another company. Publishing source has
to be done after significant thought and consideration.

As to the second option of allowing the ISV to pick a version of the kernel and
library, what if Oracle picks one and Informix picks another? Or if Corel and
Oracle pick different versions and the customer cannot run one of these
solutions without searching the Internet to find patches? How will Linux
compete against Microsoft when they've claimed to be a one-stop shop? The
commercial customer loses because he must know his way around to find the
patches and fixes on the Internet. Even VARs and Systems Integrators who are
technical enough to do so cannot afford to spend the time.

The third option is to port to just one distribution. This seems counterintuitive
to the Linux and Open Source community that believes in choice. However,
there are those who would support this option to solve the problem. The major
concern with porting to only one distribution is you lose out on the innovations
being made by others who are targeting different markets. Some of the leading



distributions have targeted the developer as the principal customer, as
developers have made up the majority of those purchasing Linux until now.
Features like time-to-market are of vital interest to the developer. Packages are
gathered from many different sources around the Internet to ensure the
quantity and timeliness of delivery, and little concern is given to ensure that
source and binaries match. After all, the developer knows enough to make it
work.

Commercial concerns cannot deal with more than two releases a year, so time-
to-market is not a feature but a liability. Caldera Systems has been focusing on
the commercial or business market from its inception and has built features
like self-hosting into the distribution. Self-hosting is the discipline to match all
source to the binaries. It allows the commercial entity to set all of the
compilation parameters for the entire distribution, maximizing performance
and support options while limiting security and liability concerns. All the
packages are tested and integrated as a single whole. Distributions focused on
the developer may choose to take the time to add more packages which appeal
only to the developer, or release a technology before it is stable so that
developers have easier access to it. The bottom line is that the Linux
community and the business customer will lose options and choice if a single
distribution is used as the reference platform. Some ISVs may choose one and
some another. The only real answer is for the Linux community and the current
providers of Linux to collaborate.

Linux and the whole Open Source community have a great opportunity to
become significant players in the commercial environment if they remain open-
minded. If Linux and the Open Source community can make it easy for
commercial players to interact with Open Source without incurring legal
liabilities or major costs, Linux will be a significant player and the customer will
win.

LSB can be a major step toward solving this problem and showing the industry
that Linux is different, not only because it is published under an open-source
license, but because its providers have vision. If the major Linux distribution
providers can collaborate and support a common kernel and library version as
well as the basic interfaces that enable an ISV to port once to Linux and support
all Linux providers, everyone wins. If the Linux providers are irresponsible and
choose not to cooperate but continue on with their own agendas, Linux is not
as likely to fragment, but will fall significantly short of its potential to be the
predominant computing platform, open source or otherwise, in the industry.

Linux is not as likely to fragment, as its cousin UNIX did in the OSF/UNIX
International debacle, because it is Open Source. However, being Open Source
will not completely solve the problem either. The premise that the best open-



source technology always wins is not true. GNOME and KDE are prime
examples. KDE is excellent technology that has matured faster than GNOME.
The main reason GNOME was started was because the Qt libraries KDE
depends on were not Open Source. Since Troll Tech has now published the
libraries under an accepted open-source license, all concerns about KDE should
be over. Instead, a significant public relations effort has begun to continue to
spread uncertainty and doubt on KDE. Technologically, it is superior in all cases
and is more mature. Why would someone persist in promoting false
information about KDE? Because they have invested time, money and energy in
GNOME and the KDE developers do not have the funds to fight back. Again, the
Open Source community is not immune to the influences of the almighty dollar.

Clearly, if Linux is to achieve its potential as a major industry alternative, we
cannot rely upon Open Source alone. All of the industry players must act
responsibly. Caldera Systems has always wanted Linux to be a viable
commercial alternative, so we believe the only real answer is to support LSB.

Pacific HiTech, TurboLinux, Scott Stone

Pacific HiTech will take an active role in the development of Linux standards
and will make compliance with the adopted standards a design goal of all our
Linux products. We believe a well-defined set of Linux standards is important
so that ISVs can more easily port their applications to the Linux operating
system without worrying about distribution compatibility.

I'd like to see them develop to the point where any compliant distribution will
have the same shared libraries available and the same basic file-system
structure. Some people have suggested that a standard package manager
would also be important, but I'm not necessarily sure that's true—for example,
.deb and .rpm can both provide a system in which a given third-party
application could work, provided that the shared libraries and path structure
are the same. What I would like to see is a common system for “registering”
applications so that desktop managers and other programs would have a
standard method of determining what is installed on the system.

Slackware, Patrick Volkerding

Slackware is waiting to see what the proposed standards are before we commit
to complete compliance, but I do think the effort is a step in the right direction
for Linux. I'd really like to see a list of standard version numbers to use when
building shared libraries—that should be a simple first step in getting binary
compatibility among the distributions back on track. However, the standards
should probably not go into such detail that all distributions end up looking cut
from the same cookie cutter. It is the different design philosophies which make



different Linux distributions appeal to different kinds of users. It'll be
interesting to see how these issues are balanced.

Debian, Nils Lohner

The general stance of Debian is that standardization is a good thing. Dale
Scheetz is a Debian developer and actively involved in the LSB work. LSB is also
an SPI-supported project. As Linux continues to grow, it will become more and
more important for vendors producing software to know it will run on a
number of different distributions without requiring distribution-specific
versions. The growth of Linux will be greatly helped by applications being
ported to run on it, and this growth must be supported as much as possible.

Debian, Wichert Akkerman

Debian has been involved in the LSB project from the beginning. One of our
developers, Dale Scheetz, is working on the LSB right now. We've been talking
with Red Hat since before LSB so that we can develop binary compatibility
between the distributions. The important system libraries should be fully
compatible across all distributions. We don't want to see the kind of
incompatibilities suffered by users of 16-bit MS Windows software when they
upgraded to 32-bit MS Windows. Debian is currently working to adopt the File
Hierarchy System, but we feel a few issues remain to be resolved. Debian is
happy to help create standards and compatibility with the other distributions;
the LSB is one of the methods we are using to make this happen.

SuSE, Marc Torres

SuSE has been a member of the Linux community since 1992, and we have
people dedicated to and working on the LSB project. We are proud to be active
members of this project. We are hoping to see some sort of minimum library
standards because that is what our customers want. ISVs need that kind of
standard to work efficiently. Hardware vendors deserve a standard in order to
certify their hardware across distributions.

Stampede Linux, David Haraburda

It's my personal opinion that standardization is good thing. But like always, too
much of a good thing can be a bad thing. It really all depends on which aspect
of the Linux system you want to standardize, and how much. Where do you
begin and where do you stop? If we standardize the file system layout,
packaging and user tools, is anything left? I'm not sure of LSB's plan—but from
my reading, it doesn't look like they have a well-laid-out plan quite yet.
Standardizing file locations is a great idea; I know it would solve half of the
problems I encounter. I read somewhere LSB plans on having a standard



packaging system. That is a tricky subject for me to even personally comment
on—we have a lot of plans for our Stampede Linux Packaging system (SLP).
There are some features the standard may not include that we'd like to have.
Obviously, we can contribute to the project ourselves, but if the majority
doesn't like our idea, then it won't go in. The great thing about Linux is that if
you don't like something, you can't complain. Don't use it, find something else,
hack the source code, or start a whole new project. If a situation like this arises,
the user who wants a feature can no longer search for another package; he
must try and somehow convince the authors to add it.

At this time, two extremes are apparent: one is “everyone does their own thing,
their own way” and the other is “everyone does what the standard says”. I'd like
to think we aren't at either of these extremes right now. That fine line between
them needs to be found, and when someone finds it, I'll be able to comment
further.

Currently, with the information we have, Stampede's stance is neutral, but this
could easily change. It could change tomorrow, next week, next month or next
year (just like any Linux-related project). For now, I will try to keep a close eye
on what goes on and keep others of the Stampede development team
informed. It will be much easier to make a decision once a clearly defined set of
rules has been set.

Conclusion

Well, there you have it—the positions of the major distributions on the topic of
Linux standards. As you can see, all positions have one major theme in
common: a serious concern for the future of Linux Standards and a desire to
see standards work for every user.

Norman M. Jacobowitz is a freelance writer and marketing consultant based in
Seattle, Washington. He can be reached at normj@aa.net.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

WordPerfect 8 for Linux

Michael Scott Shappe

Issue #62, June 1999

If you're already perfectly happy with WordPerfect 7, in that you're not
experiencing any problems and not missing any particular feature, you may
simply not need this upgrade. 

• Manufacturer: Corel Corporation(ported by Software Development
Corporation)

• E-mail: custserv2@corel.com(info@sdcorp.com)
• URL: http://www.corel.com/(http://www.sdcorp.com/)
• Price: Server Edition: $495 USPersonal Edition: $69.95 US (MSRP),$49.95

via Linux Mall, Linux Central and Linux Systems Labs
• Reviewer: Michael Scott Shappe

WordPerfect 8 for Linux is an evolutionary improvement over last year's
WordPerfect 7 port to Linux, and so, appropriately, this review is merely a
follow-up to my review of WP7 (“Word Perfect 7 for Linux”, April 1998). 

To summarize that review, I'd found WordPerfect 7 to be a very good port of a
solid product. It had all the features I needed, plus many features I didn't, which
are necessary for buzzword compliance. It fit handily into what was then a very
low-end machine: a Pentium 120 laptop with 16MB of memory and 1GB of disk
space, only 600MB of which were allotted to Linux.

My problems with it at the time were few. It was a bit on the slow side,
particularly under Xfree86; I found I had to turn off many of the dynamic
features, like Spell-as-you-go and the application bar at the bottom of the
window. Under AcceleratedX, performance was a bit better, but I still had to
turn off the dynamic spell-checking to get good speed. I also found the style
system overly complicated, and some crashes in the help system and the HTML
conversion code.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Small Steps

How does this next version stack up? Is it worth the download time or the
$50US for the shrink-wrapped version? I'd like to be able to say, “Yes,
definitely!” Instead, I find myself thinking, “It depends.”

If you're already perfectly happy with WordPerfect 7, in that you're not
experiencing any problems and not missing any particular feature, you may
simply not need this upgrade. I know that's a bit heretical in the modern
software industry, but it's true. Most of the features already in place have had
only minor improvements.

Some nice new features are present for novices, including an extensive guide
system called “PerfectExpert”. Grammar-as-you-go is new and useful if you like
grammar checkers (I actually do).

The speed is certainly improved. When I was first given access to early betas, I
still had the same low-end configuration and found that not only could I leave
Spell-as-you-go on, but I could also leave the new Grammar-as-you-go active.
The newer version keeps up just fine with my typing. The final release seems to
be equally snappy, which made me very happy.

Getting What You Pay For

Several features are available only in the purchased version, not in the
download. Notably, the ExpressDocs template feature is not available in the
download. The number of fonts available is extremely limited. The “Insert-
>Shape” menu works, but, “Insert->Graphics->Draw A Picture” does not; so you
can insert shapes “in-line”, but not a complete picture unless you draw it with a
different program. Also, the ability to create and insert charts and graphs is
disabled.

Lingering Problems

One of my biggest complaints from WordPerfect 7 remains a complaint with its
successor; indeed, it appears that no work whatsoever has been done to
improve it. The style-sheet system is still incredibly complex—almost too
complex to be useful. It is difficult to define styles that are part of a library of
styles rather than part of a specific document, and defining individual styles is a
cryptic process.

The interaction of printers and fonts is also a bit strange. In most word
processors, the list of fonts available does not reflect the printer selection;
instead, fonts are translated or substituted at the print-driver level. In
WordPerfect, the list of available fonts is a direct reflection of the way the



currently selected printer is set up, and setting up a printer is a less-than-
obvious process. This is as much a flaw in UNIX, which has no nice, neat,
centralized print model, as it is in WordPerfect.

To Buy or Not to Buy

If you need or want a good commercial word processor for Linux, WordPerfect
8 is definitely a good value. It works, and it works well. It's also inexpensive,
which is always good.

If you already have WordPerfect 7 and are satisfied with it, there's probably no
great rush to upgrade. On the other hand, the upgrade won't break the bank,
either. Actually purchasing the product will give you a wider range of fonts and
access to all the features, as well as save you considerable download time.

As much as I was hoping for more out of this upgrade, I'm still very happy with
the product and recommend it. I hope Corel continues to have success with it.

Michael Scott Shappe is a somewhat frazzled software engineer for
AetherWorks Corporation, a start-up in Saint Paul, Minnesota. When not writing
reviews or copy editing for Linux Journal, he's reading—and attempting to write
—fiction, or attending Society for Creative Anachronism events. He can be
reached at Mikey@Hundred-Acre-Wood.com, and his web page is at http://
www.14850.com/web/mikey/.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Metro Link Motif Complete!

Liam Greenwood

Issue #62, June 1999

Metro Link Complete! is an excellent package for anyone developing in Motif on
Linux. 

• Manufacturer: Metro Link
• E-mail: sales@metrolink.com
• URL: http://www.metrolink.com/
• Price: $149 US
• Reviewer: Liam Greenwood

Metro Link Motif Complete! is a runtime and development version of Motif 1.2,
2.0 and 2.1 for Linux x86 and Linux on Alpha. It includes a bonus suite of Motif
widgets for x86. 

To install the software, you need either an x86 Linux machine or an Alpha Linux
machine with 8MB to 16MB or more of main memory and between 14MB (for
runtime-only) and 80MB (full installation with all options) of disk space. Both
libc5 and glibc versions for x86 are available, and the manual is very specific,
not only on what levels of other software you need, but also which commands
you use to find out.

I received one CD-ROM and a draft copy of the manual. The product certainly
didn't suffer from being a pre-production version, with no glaring errors in the
rather nice manual. The User's Guide primarily covers the installation and
configuring of the runtime environment (MWM, etc). If you want to do
development, you will need to either find documentation elsewhere or be
content with what's on the CD.

The installation was done on an Alpha station running Debian 2.0 and a
Pentium running Caldera OpenLinux 1.2. The installation on the Alpha went
smoothly, with only the text stopping in mid-sentence in a dialogue box causing

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


any disturbance. The x86 installation went reasonably well also. Metro provides
an easy-to-use GUI installation program, as well as instructions for doing it on
your own. They provide both RPMs and tar archives; I chose the RPMs. The GUI
leads you through the questions on which versions you want to install, selects
the appropriate RPMs and installs them. Metro runs the RPMs in a text widget
which allows them to display the output text from the RPM. In my case, I had
two package conflicts, xbmbrowser-5.1-1 and Pixmap-2.6-1. These caused an
RPM to fail to install; however, the GUI doesn't scan the displayed text for
errors, so when you move to the next screen, nothing tells you the installation
has failed. I think this is a flaw in an otherwise great installation, and Metro Link
should have the GUI clearly display whether the installation was successful on
completion.

Figure 1. Screenshot 

On the x86 system, all of the runtime elements worked, including MWM (Motif
Window Manager) fpanel (like the CDE, common desktop environment, panel)
and the Motif version of an xterm. (See Figure 1.) They didn't run very well,
however; X took around 45% of the CPU and fpanel 52% while maintaining a
load average of just under two on an otherwise idle machine. Also, fpanel and
MWM both require editing text files to configure them. With KDE and GNOME
making big efforts to provide GUI administration tools for the desktop, this
feature is unlikely to find favour. On the other hand, this package is unlikely to
be attractive to someone who just wants a CDE-like environment. On the Alpha,
MWM and fpanel ran fine, but the Motif xterm wouldn't run, as Debian didn't
have a libncurses. After linking /lib/libncurses.so.4.2 to /lib/libtermcap.so.2, it
ran fine.

The demo programs, stored in the /usr/src/motif directory, built and ran fine on
both platforms, as did xmcd.



The software comes with a bonus package from the KL Group Inc., for x86 and
Motif 2.1 only, a complete and fully functional but unsupported version of the
XRT Professional Developer's Suite family of Motif widgets. This requires an
additional 50MB of disk space.

The package comes with a whole swag of PostScript documentation on disk,
with most of the OSF documentation included for each level of Motif. For 1.2,
they include:

• programGuide: OSF/Motif Programmer's Guide
• programRef: OSF/Motif Programmer's Reference (man pages)
• releaseNotes: OSF/Motif Release Notes (excerpts)
• styleGuide: OSF/Motif Style Guide
• usersGuide: OSF/Motif User's Guide

Version 2.0 and 2.1 also have the widgetGuide: OSF/Motif Widget Writer's
Guide. Also provided on the CD-ROM are the User's Guide and the Alpha and
x86 READMEs (formatted release notes), all in PostScript format. 

Metro Link Complete! is an excellent package for anyone developing in Motif on
Linux. The quality of the package is high, and I'm confident the few rough edges
are due to the pre-release version I received for review.

My thanks to Martin Lucina for running this on his AlphaStation.

Liam Greenwood (liam@sasquach.gen.nz) is a Solutions Architect at EDS (NZ)
Ltd. He has been using Linux since Slackware was making 0.99 kernels into
distributions. He is both pleased and dismayed that the viable ports are
growing faster than he can wangle platforms to run them on.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

TclPro v1.1

Daniel Lazenby

Issue #62, June 1999

This tool suite includes four related tools: debugger, checker, wrapper and
compiler. 

• Manufacturer: Scriptics Corporation
• E-mail: info@scriptics.com
• URL: http://www.scriptics.com/
• Price: $1000 US per named user
• Reviewer: Daniel Lazenby

TclPro is a collection of tools that should make your Tcl/Tk programming life a
little easier. This tool suite includes four related tools: debugger, checker,
wrapper and compiler. Some tools are graphical, and others are command line.
Two TclPro-specific interpreters, prowish and protclsh, are also included. These
four tools provide several valuable services. 

The first tool is a Tcl compiler. The current release of Tcl compiles source code
before execution. With TclPro, one can compile source code independent of
execution. This gives you the ability to distribute your programs in a compiled
format. Not all of the Tcl source can be compiled with TclPro v1.1; items which
cannot be compiled independent of execution will be compiled when executed.
A procedure that takes a script as an argument is an example of something that
cannot be compiled before execution.

Distributing a Tcl/Tk program to non-Tcl platforms requires the distribution of
several Tcl/Tk files and libraries besides the application's Tcl script. With the
TclPro Wrapper, you can bundle all of the various files into one statically or
dynamically wrapped file. Wrapping a Tcl application statically creates a stand-
alone bundle of tclsh and all related Tcl libraries and application files. I wrapped
a simple 1820-byte file and in return received a file almost 1.67MB in size.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Programs prepared in this manner can be loaded and run on platforms without
regard to the installed Tcl version.

Wrapping an application dynamically will reduce the application's size. The
same dynamically wrapped 1820-byte file produced an output file of about
107.5KB. There is a cost for this smaller footprint. Dynamically wrapped
applications require the target platform's Tcl installation to be compatible with
the Tcl release of your application. Both non-compiled and compiled Tcl files
may be fed to the TclPro Wrapper.

Each new version of software presents some new functions or features.
Sometimes a little backward compatibility is lost among those new features and
functions. I am notorious for dropping a semicolon or curly brace in my code.
TclPro Checker addresses these and several other programming issues. It can
detect parsing and syntax errors. Four types of warnings are provided by TclPro
Checker. There are warnings about platform portability of the code,
performance-optimization opportunities for code segments, potentially
incorrect command usage, and warnings about changes in syntax conventions
between older and newer Tcl versions. The output of TclPro Checker streams
across the screen. You may want to page the output or redirect it to a file.

Figure 1. TclPro Debugger Screen

The fourth tool is a graphical debugger with a trick up its sleeve. Figure 1 shows
how information is presented in the three panels. The upper-left panel
presents the stack. Variables and their values are presented in the upper-right
panel. Code being debugged is displayed in the lower panel. A toolbar provides
the means of stepping in, through, around and over procedures and related
code.

TclPro Debugger's other useful feature is remote debugging. With this tool, you
can actually debug a Tcl/Tk program residing on another platform. Don't get
too excited just yet. You cannot randomly select any remote file to debug.
Some prep work is required before files can be debugged remotely. Three
commands with arguments must be entered into the remote file. Only after
doing this can you debug them remotely.

Install Experience

The message here is not that I had an installation problem. It is about the
timeliness and accuracy of Scriptics e-mail support staff. They knew me only as
another person who was having a problem installing their fully-functioning
download product for evaluation on a Caldera OpenLinux (COL) v1.3 Linux
platform.

https://secure2.linuxjournal.com/ljarchive/LJ/062/3304f1.jpg


Installation materials and the Scriptics web site said TclPro was known to install
and function properly on Solaris, HP and Irix UNIX flavors. SuSE 5.3+ and Red
Hat 5.0+ were the only two Intel Linux distributions listed as known to support
TclPro. The instructions said TclPro should work on other Linux distributions,
providing they used glibc2. Having just upgraded my platform to COL v1.3 with
glibc, I could not see any reason why TclPro should not run on my platform.

After verifying libc's installation and reading all of the available README and
INSTALL.TXT files, I tried my first TclPro install. It failed. I repeated the install
and verified my steps and the displayed error messages. I contacted Scriptics
Support with the symptoms and error messages. The next business day, I
received a response requesting some additional information, a basic
explanation of the install process and a couple of things to try. Later in the day,
I sent Scriptics Support the requested information. I received a response the
next business day. The folks at Scriptics quickly spotted that COL v1.3
appended a dot (.) to the end of TclPro's CD-ROM file names. This dot was
appended only to file names that did not already contain an extension. I did not
have a solution, yet I knew what the problem was and knew an answer was
being sought. Another business day passed and I received a workaround for my
COL v1.3 installation. Using the workaround, the TclPro1.1 installation went
flawlessly.

I was set up to use KDE. My screen resolution is such that the entire install
dialog boxes did not appear on the screen. Resizing the dialog boxes under KDE
prevented access to the dialog box buttons. I suggest using the X Window
System for product installation. With X Windows, you can move portions of the
dialog box off the screen to see the various buttons.

Documentation and Other Resources

TclPro1.1 comes with a 107-page User's Guide in both hard- and soft-copy
formats. The soft copy is in PDF format and requires the Acrobat 3.0+ viewer.
Local on-line documentation also includes browser-based help and man pages.
Additional information, resources and links are available at http://
www.scriptics.com/resources/.

I compared a couple of the User's Guide chapters with the browser's help
content. The User's Guide and the local browser-based help content are similar
in some respects and also contain some differences. One primary difference is
the availability of message IDs within the on-line help.

I did notice a couple of minor things about the browser-based on-line help. The
on-line “Using TclPro Checker” topic referred to a nonexistent example. I did
find the same topic and example in the User's Guide. On the other hand, I
attempted to use an example command from the book and it failed. The



command usage error messages and the on-line help quickly pointed out the
book's error.

Licensing

At the time of this writing, Scriptics' web site and other literature indicated
TclPro is licensed to a named individual and not the platform. No clear
indication was given as to how licenses could be reallocated within an
organization if a personnel turnover were to occur. Licensing relief may be on
the horizon. The next release of TclPro will offer a UNIX-based network license
package. A five-user license will be the smallest available network license.

Support

A 30-day e-mail installation and evaluation support service is included. As
mentioned above, my experience with this support was quite positive. Scriptics
also offers three levels of fee-based support. The lowest level is an annual
product update service. This level of support provides only product updates.
The two other levels of support, Gold and Platinum, go beyond product
updates and are sold on a per-user basis. At the time of this review, the product
update service is a prerequisite for either the Gold or Platinum support levels—
not an unreasonable condition. I feel some of the other conditions on support
need to be rethought. For example, the Gold-level support required purchasing
support for a minimum of five users. This is rather expensive if you own only
one or two licenses.

Minimum Platform

I was unable to find recommended minimum system requirements in the
documentation or on the web site. This product's command-line tools run on a
486/66 platform with 24MB of RAM. I do not recommend running the debugger
on this class machine unless you do not mind waiting several minutes.
TclPro1.1 runs quite nicely on a 300MHz Pentium II with 64MB of RAM.

Conclusion

I found TclPro Version 1.1 easy to learn and found value in each of the four
TclPro tools. I feel the product is definitely worth the download and evaluation.
The User's Guide very adeptly describes TclPro: “TclPro is an evolving piece of
software. We will continually improve TclPro according to the user feedback
and the needs of the Tcl community.” Let Scriptics know if it does not meet your
needs.

Note that a beta release of TclPro Version 1.2 was made available shortly
before this article was submitted for publication.



Daniel Lazenby (dlazenby@ix.netcom.com) holds a BS in Decision Sciences. He
first encountered UNIX in 1983 and discovered Linux in 1994. Today he
provides support for a range of platforms running Linux, AIX and HP-UX.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

The Linux Network

Duane Hellums

Issue #62, June 1999

The Linux Network is chock full of networking gems that reflect decades of
experience and significantly ease the task of creating a Linux-based network. 

• Authors: Fred Butzen and Christopher Hilton
• URL: http://www.idg.com/
• Publisher: IDG Books Worldwide, Inc.
• Price: $39.99 US
• ISBN: 1-55828-589-X
• Reviewer: Duane Hellums

Administrators considering networked Linux servers and workstations can now
find almost everything they need in one place and no longer have to rifle
through mounds of books and technical articles in numerous magazines. The
Linux Network is chock full of networking gems that reflect decades of
experience and significantly ease the task of creating a Linux-based network. 

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


This book is a “primer” for individuals or smaller offices and organizations that
typically cannot afford solutions offered by consultants and proprietary off-the-
shelf UNIX servers. Readers should be aware that the book is specialized for
networking, so it covers only adding or modifying networking options to Linux, 
not basic installation of the Linux operating system and kernel. The book
includes Slackware version 3.5 based on Linux kernel release 2.0.29, and as
such, does not discuss configuration of other distributions such as Red Hat,
Caldera, SuSE or Debian. Of course, other than a few minor exceptions, the
underlying technologies are extremely similar and the discussions pertain to
most Linux distributions.

The authors provide detailed instructions on how to implement typical server
functions such as FTP, TELNET, e-mail, news, NFS and SMB file sharing, web
server and browsers, proxy server, “gateway” router and DNS. They also include
some cool tools, such as details on how to connect to 3Com's 56Kbps
telephone line test system, how to optimize Linux networking for security, how
to effectively use the syslog daemon and other network debugging tools, and
how to configure the point-to-point protocol (PPP) daemon and dial daemon for
“dial-on-demand” connections to the Internet. They include a comprehensive
networking primer and share many networking jewels, such as the limitations
of the ping tool, the differences between IP masquerading and SOCKS, and
scalability estimates in terms of users and available network bandwidth. One
thing they do much better than many Linux books is include information on
how to configure networking to meet the needs of several different real-world
examples. They also show all of the Slackware networking configuration
options with detailed descriptions of each choice, whereas most writers include
only those items on the “typical” installation decision tree, often without any
useful description of the options.

The Linux Network provides almost all of the tools needed for an administrator
to create a networked Linux workstation, workgroup server, or gateway in
either an intranet or Internet environment. I say almost because it lacks a few
small items, such as detailed alternatives to UUCP mail service, how to
configure Linux and Windows to provide an RS-232 serial port “terminal”
connection to a Linux server, how to configure a Linux server to allow dial-in
modem connections for remote users, and details on how to implement a
Linux DHCP (dynamic IP allocation) and news server. The latter two items were
deemed to be outside the scope of the book. UUCP is quite limiting, and many
small businesses may have application needs which require remote dial-in, or
call for a simpler “network” of Windows-based text terminals connecting to a
Linux server, either through a serial port or a multiport serial card.

The writing style in The Linux Network is straightforward and not overly cute,
unlike some contemporary technical writing (with the minor exception of the



use of the pronoun she exclusively to denote all users and administrators in the
book, taking a needlessly political stand on a moot issue while simultaneously
abandoning centuries of practical English language custom). The authors
include pertinent, useful and interesting details and elaboration where
appropriate. Information is nicely organized in a logical manner, usually as a
series of steps which show how to install, configure, activate, test and debug
networking software and tools.

Emphasis on heterogeneous networking solutions using Linux and Windows is
adequate, especially where it involves file and printer sharing. However,
coverage of Windows e-mail and newsreaders is somewhat out-of-date and
limited to Microsoft Exchange client software. Administrators of Linux networks
that include some Windows desktops in the mix should give serious
consideration to using Microsoft Outlook Express, which receives no coverage
in this book. As with most Linux books, unfortunately, this one has the usual
smattering of Windows-bashing. There seems to be an overall bias towards the
Netscape Internet suite (mail, news readers and web publishing tools) over
Microsoft's (Explorer, Outlook Express, FrontPage Express), which does make
some sense for companies with both Linux and Windows desktops that want to
standardize applications across both platforms. There also seems to be a
preference for Linux across the enterprise, to include Linux workstations rather
than the more likely Windows desktops.

The book emphasizes using the Linux server to handle both local and Internet
mail services, primarily through UUCP connections, which the authors admit is
generally either prohibitively expensive or not available in the administrator's
area. For a typical small office sharing a dial-on-demand Linux Internet gateway
among half a dozen or so machines and users, a more affordable and graceful
solution might be to use individual Internet e-mail accounts through an Internet
Service Provider, and local Intranet e-mail accounts on the Linux server (a
solution for which Outlook Express excels).

All in all, The Linux Network is a very useful book for any administrator who has
Linux up and running on a PC, but is considering the benefits of networking
Linux with other PCs and possibly the Internet. For those people who do not
already have Linux installed, this book should be combined with a good general
purpose Linux book containing detailed basic installation and configuration
instructions. Many people run Microsoft Windows (Workgroups, 95 or 98) on
desktop PCs and want to integrate them with a Linux workstation or two, or use
a Linux server as an affordable, efficient, “open” alternative to an expensive,
proprietary NT server. Those people should supplement this book with a good
basic Windows TCP/IP networking book. Actually, Microsoft's Internet site active
server pages and application wizards make it fairly simple to download, install,
configure and use Microsoft's suite of Internet tools.



Duane Hellums is a program manager, software engineer and IT consultant
with a Master of Science in Information Systems degree and nine years of
network and system administrator experience. His e-mail address is
duane@hellums.com.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Developing Imaging Applications with XIElib

Michael J. Hammel

Issue #62, June 1999

The X Image Extension, more commonly known as XIE, provides a mechanism
for graphic image management in the client/server environment of X11. 

• Author: Syd Logan
• Publisher: Prentice Hall
• URL: http://www.prenhall.com/
• Price: $54 US
• ISBN: 0-13-442914-1
• Reviewer: Michael J. Hammel

Computer graphics have come a long way for Linux users in the past two years.
Applications of all kinds have started to show up in many places, coming from
both the Open Source community as well as commercial vendors. One reason
for this recent growth is the flexibility and extensibility of the native windowing
system: the X Window System, also known as X11. Although end users are the
eventual benefactors of this flexibility, it is the development side of Linux that

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


will be most interested in one of X11's least-known extensions—the X Image
Extension. 

The X Image Extension, as the name implies, is not part of the core X11
distribution, although any system using X11 Release 6 (aka X11R6) should have
this extension included. The X Image Extension, more commonly known as XIE,
provides a mechanism for graphic image management in the client/server
environment of X11. Image decompression, for example, can be handled on the
server side (the display side) instead of overloading clients with this common
and resource-consuming task.

Some time back, the author of Developing Imaging Applications with XIElib, Syd
Logan, contacted me about this extension and recommended the GIMP
developers take a look at it. At the time, I was modestly involved in GIMP
development, back in the very early days when the GIMP was still a Motif
application. XIE never really seemed to catch on in the developer community
for the GIMP. Perhaps it was simply because no text was available from which
to learn the API (the applications programming interface or the interface into
XIE's software library). It may also have been due to the fact that not all
developers were on Linux at the time and not all UNIX vendors had migrated to
X11R6, a situation that continues to this day.

Despite the GIMP not using XIE, I've still been interested in what XIE is all about.
What can it be used for? How difficult is adding it to an existing application?
Does it help solve some of the more mundane problems in computer graphics,
or is it more focused on specific types of problems?

Syd's book is well-organized and provides answers to most of these questions.
The text is thick—well over 600 pages—with chapters ranging from
introductions to existing image handling methods in Xlib to the nuts and bolts
of XIE's API and its underlying data structures. The chapters flow from an
overview of the XIE architecture into high-level concepts such as “photoflo
elements” and image file formats to more detailed descriptions of using
“process elements” to do format conversions and the use of “techniques”, the
algorithms used by the server side for image processing.

Even with my self-taught experience in graphics terminology, I discovered XIE
has a whole new set of terms to learn. A fairly complete glossary of these terms
is included at the end of the text, but you'll find Syd's definitions within the text
to be a better source of information. He does a good job explaining new terms
quickly and fitting them into the larger picture that is XIE.

Accompanying the text is a CD with a modest bit of sample code from the text.
The README on the CD is quite extensive and should be read before trying to



build or run any of the software on the CD. Some of the files on the CD do not
have read permissions for anyone but the file owner, so you'll have to copy the
files from the CD as the root user and then do a chown/chmod sequence to get
them installed properly.

The libtiff and jpeg libraries, required to build the XIE samples, don't build easily
from the CD. I downloaded the latest libtiff source from the FTP sites specified
in the README file (found in the libtiff directory on the CD) and replaced the old
version with the new version. I couldn't do that with the JPEG library, because
the main archive location of ftp//ftp.uu.net/ doesn't allow connections from
dial-up hosts whose names don't resolve in DNS. So, I grabbed the source from
the GIMP server (ftp//ftp.gimp.org/pub/libs/). The new versions built much
more easily. I did not, however, install these libraries on my system, as I already
had working versions installed. The /xiesamples directory hard codes the
library paths to these image libraries (libtiff and libjpeg) to be relative to the
samples directory. I simply built the libraries and then renamed the default
directories (from the archive files) to the directories expected by the XIE CD
software. After this, the CD software built fine.

The sample software under the /xiesamples directory covers most, if not all,
examples from the text. Since all of the sample clients on the CD were written
on Linux, they all built fine (after updating the two libraries described
previously). Programs here are small examples of the base features of XIE as
described in the text. From the README file on the CD:

Most of the samples work with gray-scale JPEGs, a few
work with CCITT images stored in TIFF files, PGM, PPM,
color JPEGs, or raw SingleBand (gray-scale) images.

Unfortunately, I had problems running these sample programs on my system.
After rereading the README file, I discovered some of the samples work only
on 8-bit PseudoColor visuals. I have my system running in TrueColor mode.
Take a look at the README file for explanations of each sample; it will tell you if
you can specify a visual and/or the type of color map to use. However, in my
limited tests, the only sample program I was able to run under a TrueColor
visual was the backendtest program. 

Chapter 2 has a fairly good discussion on using Xlib for image manipulation for
anyone who had problems understanding it from the O'Reilly Xlib manuals. This
text is a programming guide, not a reference guide. To my knowledge, a printed
reference guide for XIE is not yet available.

Throughout the text, Syd provides examples of how to make XIE API calls,
including well-commented data structures used in the API. It's obvious Syd
understands the ins and outs of the API. He provides extensive source code



examples—I hardly went through three pages without seeing at least one
snippet of code.

Plenty of gray-scale example images are printed in the text, and at least a few
of these lose some of their impact without color. An eight-page color gallery is
in the center of the book. However, these images are useful only for explaining
some general graphics terminology and techniques and are not really
descriptive of XIE itself.

I found Chapter 15 to be one of the best chapters simply because of its
application to other graphics areas. Color space conversion is a common task
and one that is not well-supported by many Linux graphics applications. For
example, three paragraphs into this chapter, I learned that

YCbCr images represent color and luminosity as
separate channels in the image. Humans are more
sensitive to changes in luminosity than to changes in
color, [so] compression algorithms can apply greater
compression ratios to the color bands than are applied
to the luminance band (Y) without degrading the
perceptible quality of the image.

This sort of information, while explaining why certain color spaces are
supported by XIE, also provides definitions that are applicable to other color
management tools. 

One issue not covered well in this text is how XIE might be used, if it can be
used, with tools like OpenGL or Mesa. It might not make sense to combine the
two, but there doesn't seem to be any mention of how XIE fits into the overall
X11 collection of core features, extensions and third-party graphics libraries.

Summary

Syd Logan's text is an extensive work that thoroughly covers the X Image
Extension. Since Syd worked on a sample implementation of XIE, he is well-
qualified to discuss the topic. The question is whether XIE is the right solution
for your imaging tasks. Its ability to offload some work to the server can be very
beneficial. Granted, my graphics experience is not as extensive as it could be,
but with the runtime size of some X servers already growing to over 20MB on
x86 Linux, one has to wonder if XIE is a good idea or not. A thorough reading of 
Developing Imaging Applications with XIElib should help you answer that
question.



Michael J. Hammel (mjhammel@graphics-muse.org) is a Computer Science
graduate of Texas Tech University, and a software developer specializing in X/
Motif. Michael writes the monthly “Graphics Muse” column in Linux Gazette,
maintains the Graphics Muse web site and the Linux Graphics Mini-HOWTO,
helps administer the Internet Ray Tracing Competition and recently completed
work on his new book, The Artist's Guide to the GIMP, published by SSC, Inc. His
outside interests include running, basketball, Thai food, gardening and dogs.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

mailto:mjhammel@graphics-muse.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

MiniVend—the Electronic Shopping Cart

Kaare Rasmussen

Issue #62, June 1999

If you need a catalog system for your web page, this product may be just what
you are looking for. 

When managing an ISP, you will eventually need a solution for electronic
commerce. Many possible solutions are available, but the problem is that they
are either big and expensive or small freeware that does not include all the
necessary options. I heard about a system called MiniVend, released under the
GNU General Public, and decided to try it out. 

Features

MiniVend is a full-featured electronic catalog system (commonly known as a
shopping cart) with on-line ordering capability. It is designed to provide an
interface complete with SSL security and full database support.

Some of the main features of MiniVend 3.0 are:

• Multiple catalogs allow one server to run many shops, so it is ideal for an
ISP.

• Security is provided through SSL for credit card ordering and PGP for
mailing of orders.

• It has a well-developed database integration with SQL support, including
ODBC.

• A very powerful search capability is provided with fast binary search,
range searching, numeric and alphanumeric search sorting with reverse,
numeric and case-insensitive options, etc.

• All aspects of the appearance can be controlled. MiniVend supports
frames, and the pages can be built on the fly or pre-built for heavily used
items.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


• It is very flexible, with sales tax, discount and freight calculation, easy price
adjustments and much more.

• Cookie support allows users to leave the shop and come back without
losing session state. It works well with all browsers and includes
CyberCash support.

• Easy administration is possible with automated installation and
configuration, and off-line and on-line database builds.

MiniVend is a client/server system. The browser talks with a small application
that in turn talks with the MiniVend server through a socket. For this reason,
you don't have to load the MiniVend server for each user session, which might
overload the system. 

Figure 1. The MiniVend System 

I don't know how the name came to be—there is nothing “mini” about it. It is a
full-featured electronic commerce system that can meet the needs most people
have for such a system. MiniVend is powerful and correspondingly complex. It
can easily scale from a few items per catalog to a million items or more, with
excellent performance. If you have only a few items and don't intend to grow,
MiniVend is probably overkill.

Requirements for Electronic Commerce

The key issues are ease of use and flexibility. The system should do what is
needed without too much administrative work and also include all your desired
features in an easy-to-use manner.

Options that are a must include:

• The ability to exchange data between internal and external databases.
The product information will normally be kept in a company database of
some kind, and entering data by hand would be cumbersome, to say the
least.



• Automate the order process as much as possible. The ideal situation will
be one where you only have to feed the order into your system, with all
taxes, freight costs, etc. handled by the software.

• A method of handling discounts for selected customers and for volume
sales should be available.

• Feedback should be sent to the customer by e-mail when an order is
made. This helps to catch any errors made by the system or the customer.

• Security for payments is also an issue. The system needs to use SSL and
perhaps another encryption protocol when it sends data to and from the
database.

• Good documentation and support is needed. The documentation should
be so well-written that it can get you started quickly (in a matter of hours);
the support should get you past any show stopper.

We all have different needs, and each person will have a preference as to what
goes into a system for electronic commerce. I like a system that does only what
it is supposed to do: handle product information, searching and ordering, while
leaving domain name registration and chat rooms to their own specialized
tools. 

Why I Chose MiniVend

Whenever I have a choice between commercial and Open Source products, I
always try out the freeware first. Of course, there is the issue of price, which in
the case of Shopping Carts can be a very big issue. Access to the source code
will in most cases guarantee that the system is more error-free, because users
can have a look at the code and suggest solutions to any existing problem.
After all, the users are the people who know where the trouble is, and they are
normally more motivated to find and correct it.

However, it is not only a choice between commercial and Open Source systems.
Other Open Source products are available, but MiniVend stands out in the
features category. It is simply incredible how much functionality is provided and
how easy it is to configure. All the configuration options I could think of and
more are included.

Also, MiniVend is easy to use with several merchants, and I can use it with my
Apache 1.3 with no problems.

Installation

Installation couldn't be easier. Simply type

su wwwrun
tar xvzf minivend-latest.tar.gz



in the directory where you want the installation directory to be created. This
command will unpack the latest version of MiniVend. The version I downloaded
was 3.11, which was released only a week or so before I tried it. (See
Resources.) 

The user wwwrun owns the web server's /DocumentRoot directory. Any user
with write access to both this and the /cgi-bin directory can be used.

./configure

The installation process includes a long question-and-answer session, but you
can just press enter to answer most of the questions; MiniVend comes with
sensible default values. When the installation of MiniVend is finished, you will
get the opportunity to install a catalog: 

-> /home/httpd/mvend
-> Make the simple demo now? [yes]

Select a short, mnemonic name for the catalog. This will be used to set the
defaults for naming the catalog, executable and directory, so you will have to
type in this name frequently. If you are doing the demo for the first time, you
might use “simple”: 

Catalog name? simple

The rest of the installation consists of some simple questions I won't repeat
here. The server name and /cgi-bin location should be working before you try
to install MiniVend. 

Figure 2. The Simple Demo 



When everything is installed and ready, you can start the MiniVend server with
this command (use the path to your installation):

/home/httpd/mvend/bin/start

Installation Notes

MiniVend is a big program, meaning it is very complex, and if you encounter
problems, support is not always available. A mailing list is available, but none of
my questions got answered during the test period. That included questions
about internationalization and the installation problem I had on the one
machine on which it was needed.

On the other hand, I found the documentation to be very extensive, though a
bit hard to follow at times. The 600KB HTML documentation (see Figure 3) is a
definite plus.

Figure 3. MiniVend HTML Documentation 

Be very careful with your choice of user for the MiniVend server. This user must
have write access to both the /DocumentRoot and the /cgi-bin directory, as you
will install a demo with both HTML pages and CGI-scripts. But don't make the
mistake of running the MiniVend server and the web server as the same user --
that is a security risk to avoid. The best solution in a production system is to
create a new user to handle the MiniVend server.

It is the user's duty to ensure the security of sensitive data. You can set up
MiniVend to leave the data anywhere on the server or send it by e-mail to the



merchant, but you must consider how to encrypt the data. MiniVend supports
PGP encryption, so there is a way to set up a secure data transfer.

During this short test period, I obviously didn't have time to test for “wear and
tear”, but everything seems to be designed with ease of use in mind. The
system tables, e.g., sales tax or freight values, are easy to adjust, and you can
update the database off-line or on-line, as individual records or all in one
swoop.

Configuration of Web Pages

There's a host of options for configuring web pages. MiniVend has a complete
tag language with over 80 different functions. You can embed code in the pages
and use conditional statements like [if ...] text [else] else-text [/else][/if],
allowing for insertion of text or HTML code based on some computed choice.

All MiniVend commands are embedded in the pages within square brackets ([
]). MiniVend preprocesses the pages before turning them over to the web
server, replacing the commands with the values they represent. The most basic
commands are the data tags that embed information from the database in the
web page, but there are also commands for looping, inserting text from
external files, inserting total fields and a lot more.

Figure 4. Example of a Configured Page 



The example in Figure 4 was done with an external file holding all the text of
the page. I named a field “webpage” and put it in the database, then inserted
this in the template for the product page:

[include pages/products/[item-field webpage]]

which means I want to include a file at this point in the web page. The file
should be found in the directory /pages/products/ and have the name that is
taken from the web page field of that product. 

As a developer, I was happy to learn you can even embed Perl code into the
pages. At the same time, I have to agree with the documentation; it is a feature
to be used rarely. Embedding Perl is like using a chain saw: you can get the job
done quickly, but if used wrong, it can cost you an arm and a leg!

Administration

At the heart of MiniVend is the Products database. Normally, it is just an ASCII
file with fields separated by tabs. The field names are given in the first row and
MiniVend indexes the database with GDBM (GNU Database Manager)
automatically. You can even hook up to a real SQL database through Perl's
unique DBI interface, if you already have one.

You can update the database on the command line with the offline command,
or if you just want to change one record, you can use the update command.

It is possible to import data from any source, provided the data can be
formatted with the fields separated by tabs. If you want to adjust all the prices
in the system, it is easy to do so with the commonadjust feature.

MiniVend records all sessions for future use. Obviously, some session data will
become obsolete after a while, so it is a good idea to put an expire script in
your crontab file:

44 4 * * * /home/httpd/mvend/bin/expireall -r

This will prevent your session databases from growing too large. 

Conclusion

MiniVend is very impressive, almost awesome. This is software of a kind that
other companies ask thousands of dollars (or euros) for, and MiniVend is free
through the GPL. It is also a showpiece, demonstrating the versatility of Perl. A
shopping cart system is not a small piece of code; MiniVend is a full-featured,
powerful example.



MiniVend is a big system, not something you can cover in one session. It has
scores of features I didn't even have time to try out yet. I've had a few problems
with it, but I firmly believe that MiniVend is a system that can be used for any
kind of electronic commerce. As I learn the features and study the code, I will
become more familiar with it and can make it do all the things I want it to do.

If you're looking for a turn-key system, MiniVend is not it. On the other hand, if
you are looking for a powerful, flexible and easy-to-use system, MiniVend is for
you. The documentation is great, the source code is all there and if the support
on the mailing list scales up a bit, there is nothing to fear.

Resources

Requirements

Kaare Rasmussen (kar@webline.dk) is a software engineer and developer,
responsible for the software direction of a small Danish ISP known as Webline
when work, family and other duties allow the time. Kaare has been working
with almost all aspects of the IT industry for the last twenty years or so. He has
written several books in Danish during the past five years—the latest one about
using the Intranet with Linux.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/062/3301s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3301s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Introduction to Sybase, Part 1: Setting Up the Server

Jay Sissom

Issue #62, June 1999

Sybase comes to Linux—here's how it works. 

Sybase has released their SQL Database product for Linux. This is a port of their
full commercial database product—it is not crippled in any way. This series of
articles will describe how to install and configure the server and how to set up
and use clients. It would be impossible to teach everything about developing
and maintaining client-server applications in a short series of articles, but these
should get you started. 

What is the Sybase SQL Server?

The Sybase SQL Server is an industrial-strength client-server database engine. It
manages data and allows many clients to access this data efficiently and
securely. The Sybase SQL Server allows you to concentrate on writing your
application rather than on writing data access and security code.

Installing the Sybase SQL Server

Before installing the server, you must determine if your system can handle it.
The server with all the documentation will require approximately 180MB of disk
space plus space for your databases. A running server will take a minimum of
21MB of RAM. If you have many clients, you should give your server much more
RAM; so for small development systems, a minimum of 32MB is required. For
small-scale production servers, I would suggest a minimum of 64MB of RAM. As
usual, the more RAM you give it, the faster it runs.

I have installed the server on numerous Red Hat 5.1 systems, as it requires the
newer glibc libraries. If you have an older Linux installation that does not
include the glibc libraries (Red Hat 4.2 and below), you should upgrade your
system. If you have a non-Red Hat system, you will also need an RPM tool to
install the files. The server is distributed as two RPM files. According to the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Sybase Linux web page (http://linux.sybase.com/), you can install the server
only on Red Hat Linux 5.x and Caldera OpenLinux 1.3. In my opinion, you could
install it on any Linux system—it would just be a bit more difficult than if you
are using the Red Hat or Caldera version.

The web URL to access these files is http://linux.sybase.com/. This site will point
you to one of the sites that offers the files for download. Remember this site—it
contains important information you will need when using your SQL Server.
After entering your registration information, you will be able to download two
RPM files: one containing the Sybase SQL Server, the other with documentation
in HTML and PostScript. This is approximately 40MB of data, so if you have a
slow Internet connection, be prepared to wait a while. Fortunately, installing the
software will take much less time than downloading it.

To install the server, log in to your Linux system as root and type the following
command:

rpm -i sybase-ase-11.0.3.3-1.i386.rpm

You will be asked to read the license agreement; then it will install the Sybase
server to the /opt/sybase directory. On my system, this is a problem because I
usually don't have enough space on the partition to hold /opt/sybase, so I make
a link that redirects /opt to /usr/local before installing. This works because it
doesn't matter where the software is installed—it will work from any directory.
From now on, I'll assume you have installed the server in its default location. 

During the installation, you will be asked to create a group named sybase and a
user named sybase. You will use the sybase user to perform maintenance on
the database server. All users who need access to the Sybase server should be
members of the group named sybase.

Now install the documentation files by running the following command:

rpm -i sybase-doc-11.0.3.3-1.i386.rpm

One thing the installation does not do is set the owner of the files correctly.
While you are still logged in as root, issue the following command: 

chown -R sybase:sybase /opt/sybase

Configuring the Sybase Server

Now that all the files are installed on your system, it is time to configure an SQL
server and a backup server. A backup server is used to back up data in the SQL
server while the SQL server is running. It guarantees that when restored, your
database will have the proper integrity. Copying your database files from the



operating system will not guarantee that your database tables will be restored
properly.

A single host can have multiple SQL servers if necessary. I would not
recommend doing so, but it is an option. For our example, we will configure a
single SQL server and a single backup server on our host.

Log in as the user sybase using the password you set when installing the SQL
server. Since it is your first login as the sybase user, the login script will ask if
you would like to run sybinit. The sybinit program is used to configure new and
existing Sybase servers and is located in the /opt/sybase/install directory.

If you installed the documentation, you can follow along with the installation by
using your browser and accessing the file /opt/sybase/doc/howto/howto-ase-
quickstart.html. There isn't room in the magazine to display all the screens you
will see. These screens are documented in the Quickstart Guide that comes
with the server.

The first option you should pick is option 3, “Configure a Server product”.
Configure the SQL Server first by selecting option 1. Since this is a new server,
select option 1 again. Each server should have a unique name. I recommend
naming the server based on its function. For example, a production decision
support server could be named dss_prod. A development accounting server
could be named acctng_dev. For this example, name the server linux_dev.
When you finish filling in the data for a screen, press ctrl-A to save your data.
Press ctrl-A now. At this point, nine more steps are required to configure this
SQL server.

Select option 1. The interfaces file tells Sybase products where servers are
located. Each server will listen on a specific port on its host. Just like SMTP mail,
TELNET and web services, Sybase servers need a unique port to allow network
connections. The interface file will hold the server name, host name and port
number for each sybase server on your network. Select option 3 to add the port
information for the linux_dev server. The sybinit program will automatically fill
in the host name for your host. You should specify the TCP/IP port your server
will listen on. For this example, select option 2, then specify 2360 as the port
number. Any unused port will work. Press ctrl-A to save this entry in the
interfaces file. After you confirm that everything is correct, press ctrl-A again.

If you have multiple sybase servers that you access, you can add information
for each server into your interfaces file.

Before continuing, a little background information will be helpful. Database
tables will hold the data for your application. For example, an accounts payable



application would have an invoice table, a vendor table and a payment table. A
database can hold many tables. A Sybase server will have multiple databases.
An accounting application might have general ledger, accounts payable and
accounts receivable databases. When a server is installed, it will have four
databases:

• master: The master database holds configuration data for the entire
server.

• model: The model database is the basis for all new databases created on
the server.

• sybsystemprocs: The sybsystemprocs database holds stored procedures
used to maintain the server.

• tempdb: The tempdb database is a temporary workspace used when
processing queries.

The sybase server manages disk space in devices. A device is a pre-allocated file
of a specific size. A device file can be up to 2GB. A single server can have many
devices. Databases are created on devices. 

Select option 2. The master device holds the master database, the model
database and the tempdb database. Its default size is 21MB. You can move the
location of this file if you wish. If you have enough disk space, you can leave it in
its current location. Press ctrl-A to save this screen. The sybinit program will
give you a warning about the file name you selected. This is normal; on Linux, it
will always give this warning. On other UNIX operating systems, the Sybase
server devices should be raw partitions on the disk. This isn't possible on the
current version of Linux, so we have to put our devices in operating system
files.

Select option 3. The sybsystemprocs database contains stored procedures used
to maintain the server. This database can also be used to store any procedures
you write for server maintenance. I recommend you double the size of this
database, so that you can add additional stored procedures to your server.
When you do this, you have to select option 5 to increase the size of the device
before you select option 1 to increase the size of the database. Put 32MB for
options 5 and 1. You can leave the rest of the options as they are, unless you
would like to place the device file in a different location. Press ctrl-A to save this
screen.

Select option 4. As the server runs, it writes error messages to a text log file.
This screen lets you set the location and name of this file. I recommend you
give this file the same name as the database server. Change option 1 to /opt/
sybase/install/linux_dev.log. Press ctrl-A to save this screen.



Select option 5. The database server needs to know the name of its backup
server. I always give the backup server the same name as the database server,
with _bs on the end. Change option 1 to linux_dev_bs. Press ctrl-A to save this
screen.

Select option 6. The server can use many languages. I have never used anything
other than us_english, so I can't tell you what will happen when choosing
another language. For our example, just press ctrl-A to save the default for this
screen.

Select option 7. You can configure which character set to use when
communicating between a client and the server. Each client will tell the server
which character set it should use. If you do not know for sure that you need
another character set, you should accept the defaults for this screen. Press ctrl-

A to save this screen.

Select option 8. Here you can specify which order to use when sorting data. By
default, the server uses a binary order when sorting. This is the fastest sort
method; however, when sorting words that are upper and lower case, the
server uses the ASCII character set to sort so that uppercase letters are sorted
before lowercase letters. Change the sort order to the dictionary sort order so
that words are sorted properly regardless of case. Press ctrl-A.

Select option 9. If you wish, you can have the server maintain auditing
information about users. For our example, we won't install auditing. Press ctrl-A

to configure the server to not maintain auditing records.

We have now told the sybinit program everything it needs to know to configure
your SQL server. Press ctrl-A to save your configuration. The sybinit program
will now configure your SQL server. It will warn you about the master device file
again, but it will create the devices and prepare the server for use. Your new
SQL database server is now running on your system.

Press ctrl-A to go to the previous screen. The next step is to configure a new
backup server. Select option 2, then option 1 to configure a new backup server.
The name of the backup server should be linux_dev_bs. Press ctrl-A to save the
backup server name.

I recommend changing the name of the backup server log file to /opt/sybase/
install/linux_dev_bs.log. This server needs to be specified in the interfaces file
also. It will listen on its own unique port. Select option 2. Select option 3 to add
a new listener. As before, the host name has already been specified. Change
option 2 to 2361. This will be the port for the backup server. Press ctrl-A to save
this screen. Press ctrl-A again to write this entry in the interfaces file.



Everything else should be correct, so press ctrl-A to save this screen. The sybinit
program will now configure the backup server and start it for you. Both the SQL
server and the backup server should now be running on your host.

We are almost done, but there are three steps we need to finish. Press ctrl-A to
go to the previous screen. Select option 4, “Configure an Open Client/Server
Product”. These three products should be configured before you use them. To
be honest, I don't know what configuring these products does because no
options are available and they seem to work before configuring; however, it
can't hurt to follow the directions. Select each of the three options one after the
other to configure them. When you are finished, press ctrl-A to leave this
screen. Press ctrl-A again to leave the sybinit program.

All of your entries are recorded in a log file. If you are configuring a production
system, print this log file and keep it on hand in case you need to recreate the
server that crashed at two in the morning.

Testing the Server

There is a basic client that comes with the Sybase SQL Server. This program is
called isql. It is an interactive SQL program that allows you to enter SQL
commands to the server and see the results. At the command line, type:

isql -Usa -Slinux_dev

The -U option tells the isql program which user name to use; sa is the system
administrator account. It is similar to root on Linux. It has all rights in the
server. The -S option specifies to which server to connect. In our case, the
server name is linux_dev. The isql program will ask you for a password. Right
after an installation, the sa user does not have a password, so just press enter.
You can now enter SQL commands that will run on your SQL server. 

The first command to run is a stored procedure that lets you change the
password of a user. At the 1> prompt, type

sp_password null,'

sp_password is the name of the stored procedure. The sa user has no
password, so we pass null as the first parameter. This parameter should be the
password of the current user. The second parameter is the new password; put
this password in quotes. 

At the 2> prompt, type:

go



go tells the isql program to execute the command. If you make a mistake while
typing a command before typing go, you can type reset to erase the command
and try again. 

All of the configuration information for the SQL server is stored in tables in the
master database. Type the following:

1> select name from sysdatabases
2> go

This is an SQL command that queries the sysdatabases table. It will list the
names of all the databases in your server. Almost all of the configuration
information for the SQL server is stored in database tables. The documentation
will give you more information on these tables. 

To quit the isql program, type quit at the 1> prompt.

The SQL server comes with a script that will install an example database on
your server. To install this database, type the following command at the $
prompt:

sql -Usa -i ~sybase/scripts/installpubs2 \
   -Slinux_dev

Type your new password when prompted. The script will create a database
called pubs2, then create tables with data in them. You can now type queries
like the following: 

isql -Usa -Slinux_dev
Password:
1> use pubs2
2> go
1> select * from authors
2> go
au_id  au_lname    ...
----------- ------------------- ...
172-32-1176 White    ...
213-46-8915 Green    ...
...
1> quit

Shutting Down the Servers

Before you shut down your Linux system, you should shut down your Sybase
servers. Do this using the isql program. Log in as the sa user to shut down the
server. Once you are in isql, type shutdown SYB_BACKUP to shut down the
backup server. SYB_BACKUP is the default name for a backup server. Then type 
shutdown to shut down the SQL server; this will remove both servers from
memory. Now you can shut down your Linux system. If you don't shut down
the servers properly, you could corrupt data. I recommend writing a script to
perform this task automatically.



Starting the Servers

To start up the servers, you need to be logged in as the user sybase. Change to
the install directory and type:

 ./startserver -f ./RUN_linux_dev

to start the SQL server and then 

 ./startserver -f
./RUN_linux_dev_bs

to start the backup server. A startup script named /etc/rc.d/init.d/sybase is
installed on your system. You can link this script to the proper places in your
rc.d directories so the server will automatically start and stop when you start
and stop your Linux system. 

Conclusion

You have installed the SQL server and the backup server and you know how to
start and stop it. There is still more to learn about the server. At the end of this
article is a list of resources that can help you learn about your new Sybase SQL
server. I recommend reading the PostScript documentation that comes with
the server. If you don't want to print the hundreds of pages of documentation,
you can use ghostscript to view them. For an easier way to view the
documentation, go to http://sybooks.sybase.com/dynaweb and select Sybase
Version 11.0.x Products. You can read all the documentation via Sybase's web
site.

Next month's installment will be about writing database clients and installing
the Sybase extension for Perl (sybperl) that will enable writing database clients
in Perl.

Resources

Jay Sissom is responsible for the web-based front end to the financial decision
support data at Indiana University. He has installed and supported Sybase
databases on many operating systems and has written database clients for the
Web using C, C++ and sybperl and for Windows using tools like Visual Basic and
PowerBuilder. When he isn't programming, he enjoys amateur radio and
playing his bass guitar and keyboards. If you have questions, you can contact
him via e-mail at the address jsissom@indiana.edu.

https://secure2.linuxjournal.com/ljarchive/LJ/062/3203s1.html


Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

CORBA Program Development, Part 2

Mark J. Shacklette

Jeff Illian

Issue #62, June 1999

This month, the more advanced techniques of naming and event services are
discussed. 

In our last article, we introduced the concept of distributed programming with
CORBA from a high-level point of view. In order to further flush out the CORBA
infrastructure, we need to detail some of the standard services that the OMG
(Object Management Group) has defined that should be supplied at least in
part by most ORB vendors. Among these are the Trader Service, the Naming
Service, the Event Service, the Interface Repository and the Implementation
Repository. 

The OMG has defined only the interface to each service while not attempting to
provide an implementation. This means an OMG Service is actually nothing
more than a CORBA interface written in IDL (Interface Definition Language). If a
particular service is not available within a particular ORB or is not well-
implemented, the developer always has the option of writing a custom
implementation for the interface. In fact, if a vendor is truly CORBA-compliant,
one vendor's implementation of a service can be used with another vendor's
implementation of the ORB. This ability to mix and match CORBA-compliant
implementations allows for flexible approaches to CORBA solutions. In this
article, we will describe two of the most commonly provided OMG Services: the
Naming Service and the Event Service. Our sample code is written using the
feature-rich and GNU-licensed MICO CORBA implementation and demonstrates
how to use both the Naming and Event Services in C++.

Last month, we introduced the concept of an IOR (Interoperable Object
Reference), which we said was like a phone number or mailing address for the
remote object. The client application can use the IOR to locate the remote
object and establish communication. In that article, we handed the client

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


application the IOR by writing it to a file and passing the file to the server
application at startup. In practice, this is an inconvenient way to design a
system. One of the most common approaches to solving the problem of
locating objects at runtime is to use the OMG Naming Service. The Naming
Service is an interface to a database where an object's name is associated with
its IOR.

In order to understand the Naming Service, it is often helpful to think in terms
of the UNIX directory structure. The Naming Service is comprised of objects
called naming contexts. A naming context can be thought of as a directory
within a file system, ultimately deriving from a common root directory (the
“root” context). Each name within a naming context must be unique. Since
naming contexts are actually objects, a naming context can be registered with
another naming context. In effect, this is analogous to creating a subdirectory
within another directory in a file system. The hierarchical structure created by
this method is called a naming graph. In order to simplify finding objects within
a naming graph, the Naming Service allows objects to be referred to by
compound names, which are similar to an absolute path name in UNIX.

The name under which an object is registered in the Naming Service is
completely discretional and not required to even describe the actual object. In
the Naming Service, the object's name is defined by a NameComponent object.
These NameComponent objects are then stored in a particular naming context.
The NameComponent object actually consists of two parts, an “identifier” and a
“kind”. The NameComponent is represented in IDL as:

struct NameComponent {
Istring id;
Istring kind;
};

Returning to the UNIX file system analogy, a UNIX file called Consumer.C would
have an identifier of Consumer and a kind of C. In the same manner, an object
may be stored in a naming context with an identifier of BusinessObject and a
kind of java. The developer can thus use any naming standard he wishes when
defining objects using the Naming Service. 

In order for a CORBA client object to use the Naming Service to find other
objects, it must know where to find the naming service. The preferred method
of finding the Naming Service is to use the OMG method 
resolve_initial_references. Under most ORB solutions, resolve_initial_references
will return the IOR of the “root naming context”, or in effect, the root directory
node.

In simplest terms, when a server application is launched, it registers or “binds”
objects it wishes to expose with the Naming Service using compound names.



This is accomplished through the bind and rebind methods. The client
application can then look up a particular object's IOR simply by resolving the
object's compound name, which the client must know. The client application
uses the resolve method to find an IOR from a given compound name. Once
the name has been resolved and the IOR obtained, the application can narrow
(narrowing an object is CORBA terminology for downcasting) the object
reference to resolve the actual object implementation; from that point on, the
object can be used as usual. Later, our example demonstrates how you might
use the Naming Service to register and locate object implementations.

Another service with an OMG-defined interface is the Event Service. The OMG
Event Service specification provides for decoupled message transfer between
CORBA objects. The decoupling of communication provided by the Event
Service allows for flexibility in terms of communication modes and methods.
Specifically, it allows one object (Supplier) the ability to send messages to
another object (Consumer) that is interested in receiving those messages
without having to know where the receiver is or even whether the receiver is
listening. This decoupling provides several important benefits:

• Suppliers and Consumers do not have to physically handle the
communication and do not need any specific knowledge of each other.
They simply connect to the Event Service, which mediates their
communication.

• Message passing between the Supplier and Consumer takes place
asynchronously. Message delivery does not need to entail blocking
(although a pull Consumer may choose to block if it wishes—see below).

• Event Channels can be set up to be either typed or untyped (not all ORB
implementations support typed events).

• Event Channels will automatically buffer received events until a suitable
Consumer expresses interest in the events. Note that this does not imply
either persistence or store and forward capabilities. Generally, an
independent queue in the Event Channel will be devoted to each
Consumer. These internal queues are generally based on a LIFO (last-in
first-out) basis, with older messages disposed when the buffer is full and
new messages arrive, without a Consumer extracting the messages fast
enough. Most ORBs will allow you to set the maximum queue length.

• Events can be confirmed and can have their delivery guaranteed, if the
vendor has implemented this capability.

• Suppliers can choose to either push events onto the channel (push) or
have the channel request events from them (pull). Similarly, a Consumer
may request to either synchronously (pull) or asynchronously (try_pull)
obtain events from the channel, or have the channel deliver events to
them (push).



• A one-to-one correspondence between Suppliers and Consumers is not
necessary. There can be multiple Suppliers connected to a single
Consumer via the Event Service, as well as a single Supplier connected to
one or more Consumers.

Two primary styles of interaction exist between Suppliers and Consumers and
the Event Channel: Push and Pull. 

Push Method

In the Push Method, a Supplier will connect to the Event Channel and initiate a
push of an event onto the Event Channel whenever it is ready to do so. It is the
Event Channel's responsibility to buffer those events until they are delivered to
one or more interested Consumers. In the Push Model, it is the Supplier that
initiates the flow of events to the Event Channel. When a Supplier wants to
connect to an Event Channel, it needs an object within the Event Channel to
“pretend” it is a Consumer. This allows the Supplier to simply deliver events to
its “Consumer”, when in reality, its Consumer is simply a proxy for the actual
Consumer, which is outside the Event Channel. It is to this proxy “Consumer”
that the Push Supplier pushes events. Thus, the Proxy object is not a real
Consumer, but merely an object within the Event Channel that provides a
delivery mechanism through which the Supplier can deliver messages.

A Push Consumer will likewise connect to a “proxy” object, a proxy that
represents the Push Supplier. When the Event Channel has a message
available, the Push Supplier proxy will deliver (push) the message to the actual
Consumer object. The message path is from the actual Push Supplier, through
its Proxy Push Consumer, to the Proxy Push Supplier and finally to the Push
Consumer itself. There are other variations of this, as our later example will
show.

Pull Method

In the Pull Method, the Event Channel will pull data from the Supplier. In the
Pull Model, it is the Consumer that drives the delivery of messages. A Pull
Supplier will connect to a Proxy Pull Consumer. Again, as far as the Pull Supplier
is concerned, it can consider this proxy object as a real Consumer that will
request events periodically. An interested Pull Consumer object will then
connect on the other end of the Event Channel to a Proxy Pull Supplier. When a
Pull Consumer is ready to receive an event, it will initiate either a pull or try_pull
call on its Proxy Pull Supplier, which will in turn query the Proxy Pull Consumer
connected to the actual Pull Supplier, to request another event be delivered. In
this way, the Consumer drives the data, when it is ready to process another
message. Some implementations of the Pull Method will allow the Proxy Pull
Supplier to periodically pull events from the Supplier at regular intervals in an



attempt to keep a buffer full of events for consumers when they request
delivery.

The nice thing about the Event Channel abstraction is a communication does
not need to be either entirely Push Model or Pull Model. A Push Supplier may
indirectly connect to one or more Pull Consumers, and several Pull Suppliers
may connect to one or more Push Consumers. It is the Event Channel logic that
allows such interrelationships disproportionality among objects. It is the
application design that drives the decisions concerning suppliers, consumers
and their numbers.

Regardless of the relationship among suppliers and consumers, to establish a
connection and deliver events through the Event Channel the following five
steps must be taken:

• The client (Supplier or Consumer) must bind to the Event Channel, which
must already have been created by someone, perhaps the client.

• The client must get an Admin object from the Event Channel.
• The client must obtain a proxy object from the Admin object—a

Consumer Proxy for a Supplier client and a Supplier Proxy for a Consumer
client.

• Add the Supplier or Consumer to the event channel via a connect call.
• Transfer data between the client and the Event Channel via a push, pull or

try_pull call.

When messages are delivered through the Event Channel, they can be either
“typed” or “untyped”. Typed messages are those defined in an IDL which are
type-checked at compile time. Untyped events, the most common, adhere to
the standard Event Services interfaces and are packaged as type CORBA::Any,
which is a wrapper around all known CORBA types. It is this “Any” type that is
actually sent from a Supplier Object to a Consumer Object. The Supplier will
construct an Any, and the Consumer, upon receipt of the message, will derive
the true value from the Any wrapper. This allows for great flexibility in
delivering messages, as a Supplier may pass a string first, a long value second
and an array third, all through packaging the values into an Any. The example
code shows how to create, embed and extract values from Any types. 

Our example incorporates both the Naming Service lookup as well as an
implementation of a Supplier and a Consumer interacting through the use of
the Event Service. The Supplier implements the Push Supplier Model and the
Consumer implements the Pull Consumer Model, thus illustrating that the
models do not have to be all of one type. Listing 1 shows Consumer.C, and
Listing 2 shows Supplier.C. These listings are available by anonymous download
in the file ftp://ftp.linuxjournal.com/pub/lj/listings/issue62/3213.tgz.



The first step the Consumer must take is to find the root naming context. This is
accomplished by calling resolve_initial_references and then narrowing the
returned IOR. The resulting object is the root naming context we can then use
to resolve our Event Service.

CORBA::Object_var nsobj =
orb->resolve_initial_references("NameService");
assert(! CORBA::is_nil(nsobj));
CosNaming::NamingContext_var context =
CosNaming::NamingContext::_narrow(nsobj);
assert(! CORBA::is_nil(context));

As we turn to the Event Service sections of the code, we notice that the first
thing the Consumer does after obtaining the initial context from the Naming
Service is resolve and narrow the EventChannelFactory. 

CosNaming::Name name;
name.length(1);
name[0].id =
CORBA::string_dup("EventChannelFactory");
name[0].kind = CORBA::string_dup("factory");
CORBA::Object_var obj;
obj = context->resolve(name);

MICO uses the factory referenced above as a generic CORBA::Object to create a
new Event Channel object by first narrowing the generic reference, then calling
the factory's create_eventchannel function: 

SimpleEventChannelAdmin::EventChannelFactory_var
        factory;
CosEventChannelAdmin::EventChannel_var event_channel;
factory =
SimpleEventChannelAdmin::EventChannelFactory::_narrow(obj);
event_channel = factory->create_eventchannel();

We then use the Naming Service to bind this newly created Event Channel
object to the name TestEventChannel via the Naming Service's bind method.
This is done so that the Supplier will be able to locate this particular Event
Channel by the name TestEventChannel when needed. 

name.length(1);
name[0].id =
CORBA::string_dup("TestEventChannel");
name[0].kind = CORBA::string_dup("");
context->bind(name,<\n>
CosEventChannelAdmin::EventChannel::
_duplicate(event_channel));

Once the Event Channel has been created and named, the Event Channel
object (event_channel) is used to obtain a reference to a ConsumerAdmin
object through the for_consumers function. The ConsumerAdmin object
provides the proxies for the Consumer clients of the Event Channel. It allows
the Consumer to obtain the appropriate Supplier Proxy. In our case, we use the
ConsumerAdmin object to provide us (a Pull Consumer) with a proxy Pull
Supplier. This allows our Consumer object to act as if it were communicating
directly with a Supplier that expects us to be “pulling” events from it. Of course,
that's not actually the case. Our Supplier is really a Push Supplier that pushes



events onto the Event Channel. The proxies decouple the Consumer and
Supplier objects and allow them to function as if they were directly connected,
when in fact, their connection is indirect. Once we have the ConsumerAdmin,
we use it to create our Push Consumer proxy: 

CosEventChannelAdmin::ConsumerAdmin_var
Consumer_admin;
Consumer_admin = event_channel->for_consumers();
...
CosEventChannelAdmin::ProxyPullSupplier_var
proxy_Supplier;
proxy_Supplier =
Consumer_admin->obtain_pull_Supplier();

Once the Consumer has obtained a reference to its Supplier Proxy, it then
notifies the Event Channel of its interest in receiving events from it through a
call to the Proxy's connect_pull_Consumer method. An implementation of the
Event Service's Pull Consumer interface is passed into the proxy_Supplier to
make the connection. 

proxy_Supplier->connect_pull_Consumer
(CosEventComm::PullConsumer::_duplicate(Consumer));

Once connected, calls can be made on the Proxy Pull Supplier's pull or try_pull
functions. The PullSupplier interface is: 

interface PullSupplier
  {
    any pull() raises(Disconnected);
    any try_pull(out boolean has_event)
         raises(Disconnected);
    void disconnect_pull_Supplier();
  };

In our case, we have the Consumer spawn a worker thread, and we pass the
Pull Supplier Proxy reference to that thread, the one that actually makes the
try_pull call. The try_pull call is an asynchronous polling mechanism allowing
the Consumer to contact the Event Channel and “check for mail”. If there is a
message in the Event Channel, that message will be returned as a CORBA::Any

value, and the try_pull's CORBA::Boolean flag has_event will be set to true. The
try_pull call is thus made from within the thread's “start” function in this way: 

CORBA::Any* anyval;
CORBA::Boolean has_event = 0;
anyval = proxy_Supplier->try_pull(has_event);

If no event is waiting, the has_event flag is set to false and no value is returned;
but the call does not block (as the pull function does), so it returns to the client
immediately. This allows the client to continue doing other work while
periodically checking to see if a new event message is waiting in the Event
Channel's queue. 

Once the has_event value is true and an Any value is retrieved, the Consumer
must decide first what type it is, then extract that value from the Any wrapper
in order to use it. The code to do that uses the Any's overloaded >>= operator.
This strange-looking beast will attempt to extract the Any into the destination



type. If the type contained in the Any is compatible with the destination type,
the value is extracted from the Any; if not, null is returned. The usual way to
check for the value is to do something like the following:

if( *anyval >>= shortval )
  {
    cerr << "Consumer: thread pulled short:
         " << shortval << endl;
  }
  else if( *anyval >>= doubleval )
  {
    cerr << setiosflags(ios::fixed);
    cerr << "Consumer:
         thread pulled double: " << doubleval << endl;
  }

In our case, when we extract the correct type from the Any, we print it out and
immediately begin checking again for events through our try_pull call. 

Our Supplier implementation is a bit simpler. After binding to the ORB, it
creates an implementation of a class that implements the CORBA PushSupplier
IDL:

class PushSupplierImpl :
virtual public CosEventComm::PushSupplier_skel
{
public:
PushSupplierImpl() { }
void disconnect_push_Supplier();
};
...
  PushSupplierImpl * Supplier =
  new PushSupplierImpl();

This class implements the IDL PushSupplier interface, which has only a single
function to implement: disconnect_push_Supplier. The implementation object,
PushSupplierImpl * Supplier, will be used later to connect to the Event Channel
and register our interest in supplying events to the Channel. 

Just as the Consumer started by finding the root Naming Context, our Supplier
begins by calling resolve_initial_references. Using the IOR returned by
resolve_initial_references, the Supplier can then narrow to the naming context
object.

CORBA::Object_var nsobj =
orb->resolve_initial_references("NameService");
assert(! CORBA::is_nil(nsobj));
cerr << "Supplier: successful call to \
resolve_initial_references()" << endl;
CosNaming::NamingContext_var context =
CosNaming::NamingContext::_narrow(nsobj);
assert(! CORBA::is_nil(context));

Once the name is resolved and narrowed, the Supplier attempts to retrieve a
SupplierAdmin object through a call to the event channel's for_suppliers

function. 



CosNaming::Name name;
name.length(1);
name[0].id = CORBA::string_dup("TestEventChannel");
name[0].kind = CORBA::string_dup("");
CORBA::Object_var obj;
...
obj = context->resolve(name);
...
CosEventChannelAdmin::EventChannel_var
event_channel;
CosEventChannelAdmin::SupplierAdmin_var
Supplier_admin;
...
event_channel =
CosEventChannelAdmin::EventChannel::_narrow(obj);
Supplier_admin = event_channel->for_suppliers();

Once the SupplierAdmin object is retrieved, its obtain_push_Consumer function
is called in order for the Supplier to obtain a Proxy PushConsumer with which
to communicate. 

CosEventChannelAdmin::ProxyPushConsumer_var
proxy_Consumer;
...
proxy_Consumer =
Supplier_admin->obtain_push_Consumer();

Once a proxy is obtained, we then need to connect the Supplier to the proxy
through this call: 

proxy_Consumer->connect_push_Supplier(
CosEventComm::PushSupplier::_duplicate(Supplier));

This call registers our interest in providing the Event Channel with events. The
IDL interface for the PushConsumer (the implementation of which 
ProxyPushConsumer inherits) is: 

interface PushConsumer
{
void push(in any data) raises(Disconnected);
void disconnect_push_Consumer();
};

Once a proxy push Consumer has been obtained, calls may be made on its
push function, passing in a CORBA::Any value. This is done quite simply: 

CORBA::Any any;
any <<=(CORBA::ULong) 555555555;
proxy_Consumer->push(any);

At this point, the Any value is delivered to the Event Channel, which is
responsible for making that event message available to the try_pull calls of the
Consumer, described above. Thus, we have come full circle in our discussion of
the Supplier/Consumer roles in interacting with the Event Service. 

Our example was built using the egcs 1.1b C++ compiler and MICO 2.2.1. In
order to build and run the example, once you have unpacked the tar file, you
simply need to update the variable MICO_BASEDIR in the Makefile to point to
your base Mico installation, then type make. This will build both the Supplier
and Consumer. To run the application, we've provided a simple script that



starts the rather lengthy MICO naming and event services for you
automatically, then starts the Consumer (which creates the Event Channel),
then the Supplier. To run the script, simply type runit. You will see the progress
of the Supplier writing messages to the Event Channel, and the Consumer
extracting them from the Event Channel; as it does so, it prints them out. Our
Supplier will push, in succession, a long, a short, a double, a string, and finally
another long (the number 13), which signals to the Consumer that it is finished.
At that point, the Consumer thread exits and the applications are killed by the
runit script.

Our next article will discuss an implementation of VisiBroker for Java that can
be made available for development of clients and servers completely on Linux
using Sun's JDK.

Resources

Home page for the Object Management Group: http://www.omg.org/

Introduction to CORBA: http://www.omg.org/news/begin.htm

The Free CORBA Page: http://adams.patriot.net/~tvalesky/freecorba.html

Java port for Linux: http://java.blackdown.org/

The CORBA FAQ: http://www.cerfnet.com/~mpcline/Corba-FAQ

Mark Shacklette is a principal with Pierce, Leverett & McIntyre in Chicago,
specializing in distributed object technologies. He holds a degree from Harvard
University and is currently finishing a Ph.D. in the Committee on Social Thought
at the University of Chicago. He is an adjunct professor teaching UNIX at
Oakton Community College. He lives in Des Plaines, Illinois with his wife, two
sons and one cat. He can be reached at jmshackl@plm-inc.com. 

Jeff Illian is a principal with Energy Mark, Inc. in Chicago, specializing in electric
utility deregulation and distributed trading technologies. He holds a degree
from Carnegie-Mellon University in Operations Research (Applied

mailto:jmshackl@plm-inc.com


Mathematics). He lives in Cary, Illinois with his wife, son and daughter. He can
be reached at jeff.illian@energymark.com. 

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

mailto:jeff.illian@energymark.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Interview: Stephen Wockner of the TAB of Queensland

Bob Hepple

Issue #62, June 1999

A mission-critical application for 580 Linux computers. 

The Totalisator Administration Board of Queensland (universally and
affectionately known as the TAB, phew!) administers to the considerable betting
needs of the Australian public in this sunny state of relaxation and fun. Virtually
every pub (confusingly called a “hotel” here), club and high street has a high
technology betting center for the Aussie punter (bettor). All to the tune of $1.3
billion Australian a year (about $900 million US)—making Queensland one of
the biggest betting communities in the world, per capita. 

From Bundaberg to Coolangatta, from Cairns to Woolongabba, the surfers and
holiday makers on the Gold Coast and the farmers in the far outback are
delighted to be ignorant of the fact that all of this technology is delivered and
controlled by a massive distributed network of over 580 Linux computers
running the TAB's own betting software. These Linux “branch controllers” are in
every betting shop, agency, hotel and club to:

• Control the video displays of information to help the punters decide which
horse to back.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


• Place bets.
• Communicate to and from the head office mainframe computers in

Brisbane.
• Let the punters access their bank funds through EFTPOS banking

terminals (Electronic Funds Transfer at Point Of Sale).

In this interview, Stephen Wockner, Manager of Customer Systems and an 11-
year veteran of TAB, takes us through the history of the TAB's use of Linux and
some of the business imperatives that led to its adoption over more
conventional systems at a time when such a decision was a very brave one. 

Figure 1. Queensland TAB Branch Schematic 

Stephen (wockner@tabq.com.au) has been involved in computer systems
development including VMS, Unix, NT and PC systems for over 17 years. He
holds a master's degree in Technology Management. He enjoys both technical
and business challenges, and Linux has certainly been able to provide them.

Bob: Please introduce the TAB for us.

Stephen: In the beginning, the Totalisator machine was invented in Australia in
1907—a mechanical device for calculating odds against bets placed and prize
money. It's now in the PowerHouse Museum in Sydney. The TAB itself started
business in about 1962 and is a statutory authority set up by the government
with a board of directors appointed by the government—it will be an
independent corporation next year. The product, mainly small bets on daily
horse racing, is an inexpensive form of entertainment in pubs and clubs across
the country and overseas where punters match their wits and knowledge of the
horses against each other.

https://secure2.linuxjournal.com/ljarchive/LJ/062/3226f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3226f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3226f2.large.jpg


Out of every $100, the TAB returns $85 in prize money to the public with $6
going to taxes, $6 to the racing industry to fund the races and $3 to run the
TAB; so, when you appreciate the scale of the organization across such a huge
territory, it's a pretty lean and mean operation.

Bob: When did the TAB first implement Linux, and why?

Back in 1990, we had a system based on QNX2, a proprietary UNIX-like system
with real-time extensions. This ran in every branch on [Intel] 386 machines with
4MB RAM, and controlled the entire shop, including running communications
back to the head office over 2400 baud leased lines. It supported several video
display devices to show punters the action and input devices for taking bets.
These were pretty specialized “mark sense” card readers and printers.

It was a blow in 1994 when the manufacturers of QNX2 announced that it
would be discontinued in favour of a new, better system called QNX4. The new
system was to be POSIX compliant and full of new features to make it a true
general purpose operating system, which unfortunately we did not need. QNX4
also came with a much bigger footprint—it would essentially require us to
upgrade all of our betting outlets (then 250) to much larger hardware.

That led us to start looking around for alternatives—after all, if we have to
upgrade the hardware, then we want to minimize the impact on the
organization and the total cost as well as take advantage of newer software
technology.

Figure 2. Mini-TAB in Use 



Figure 3. Installed Mini-TAB 

Figure 4. Mini-TAB 

Bob: What other systems did you investigate?

Stephen: We considered most of the operating systems available at the time,
including DOS plus an add-on real-time multitasking manager, Windows 3.1, an
early NT, a beta version of Windows 95 (Chicago), OS/2, Coherent UNIX, Xenix,
Solaris, QNX4 and Linux 1.0.

Bob: What led you to choose Linux in the end?

Stephen: The process was a very objective one. We had no religious or other
adherence to UNIX per se—we just had very specific business problems to
address. In the end, these came down to a bottom line of cost minimization
and the ability to do the job in over 500 locations, some very remote.



A number of the factors that went into the decision were:

• Functionality: it had to run on appropriate hardware of the day—486 with
16MB RAM in 1994, upgrading to Pentium today—and had to support the
range of exotic devices we need. This included four TV displays via a black
box controller, a four-port async port for displaying results and an RS485
multidrop LAN to control wagering terminals, typically four.

• Performance: support for particularly heavy interrupt-driven, heavily
loaded, synchronous communications back to the head office using the X.
22 protocol over 2400bps HDLC (high-level data link control).

• Reliability: a system crash could easily lead to ugly scenes—punters can
be pretty impatient when the race is only two minutes away. No, they are
not happy to be told the system is rebooting. What you have to remember
is that many punters watch the odds and place their bets at the last
minute. Reliability and performance under pressure are key requirements
for our computer system.

• Maintainability: many of our installations are not in town. They can be in
the far north or outback areas with barkeeps who are not computer savvy
or even permanent staff. The systems must be able to look after
themselves with some remote management from here in Brisbane.

• Continuity: we had to be assured that the system would last a long time.
Our systems have a life of five to seven years, and we learned the hard
way that proprietary vendor support could not guarantee this. Also, we
want to be sure that code written today will run on tomorrow's
processors. So, as far as hardware is concerned, we use commodity level
Intel PCs—the the fewer proprietary “improvements”, the better.

• Development environment: our philosophy is “insourcing”. Our
applications are specialized and developed in-house or with third-party
suppliers—all with source code available to us. A good development
environment was important.

• Purchase and maintenance costs: licensing costs of the operating system
add up quickly when 580 systems are involved. Some vendors cope better
with this than others.

Bob: How did the different systems shape up? 

Stephen: First of all, it quickly became obvious that Windows NT just could not
cope with the the heavy communications loads and interrupt rates we would
throw at it—even with top-end PCs. Windows 95 was pretty much the same.
Running on a 486 with 16MB RAM could not even match the old QNX2 systems
on a 386 with 4MB RAM. Reliability was another concern—the system had to
keep running—the infamous “Blue Wall of Death” could become literal if
punters are frustrated in placing their bets!



DOS with an add-on multitasker was just too difficult. We predicted continuity
problems if we chose a third party supplier, and technical difficulty and delay if
we wrote our own.

Coherent and Xenix were just too old—we had no confidence that support
would continue. Similarly, OS/2 was technically nice but had a very limited
future.

Solaris and other UNIX systems suffered from the same problem as QNX4—a
big footprint, as well as unreasonable licensing rates. We were also uncertain
about continued vendor support over our time scale of five to seven years.

In the end, Linux was the only system that could measure up on all fronts. The
purchase cost was nice too, but by no means the most important factor—we
would have been perfectly happy to pay a license fee (as we had with QNX2) for
the right system. At that time in 1994, Linux was growing rapidly, and we could
see that it had a great future.

Bob: How did the implementation go?

Stephen: We started work in early 1995 and made the first release of
production systems in 1997. Some work was needed in getting the X.22 HDLC
and RS485 networking going and porting the main betting application from the
QNX2 system. Apart from having to fix some minor bugs, it went very smoothly.

As well as running our code and supporting our devices, Linux just keeps on
going. So far, we have not had a riot at a betting shop because of a computer
failure—in fact, our biggest reliability problem is power surges from the
massive tropical storms we get here. Lightning can rip through even an e2fs
disk and trash it. We don't know of many systems asked to operate in such a
hostile and effectively unattended situation.

To cope with weather and other emergencies, we built a rescue partition into
each system which can be booted remotely and which does just one thing—it
rebuilds the master partition and restarts the machine. In this way, we have a
timely repair for the most frequent service call—all without sending a
technician 700 kilometers into the bush. We even have a facility (as yet unused)
to reinstall the previous version of software in the event that we make a bad
release.

Bob: Which version of Linux did you start with?

Stephen: Well, we're now on Slackware 3, kernel 2.0.14 but initially we used 1.0
and then 1.1—yes, don't look horrified, we actually ran production systems on
the developer's versions and they were rock-solid—we needed the new



features. Essentially the access to source code allowed us to customise line
drivers for our own purposes and to support ourselves. With the source in our
hands, we could be confident we'd survive. In fact, we found ourselves fixing
bugs in the 3c509 drivers.

Bob: And contributing them back, of course, as good netizens?

Stephen: Well, not always—the crazy thing was that, like many corporations at
the time, the TAB distrusted the Internet. We are, after all, a major financial
institution with high security requirements. We simply had no Internet access
available at work—we used InfoMagic CD-ROM releases and had programmers
hacking at home to download and upload additional code. Supporting Linux
without the Internet was a major pain, so we may well have been consumers
more than contributors in the early days. Today, of course, we have a full
Internet connection—you can see us (and place bets on-line) at http://
www.tabq.com.au/.

As far as contributing finished systems back to the community, we work with
our partners—our contracts generally allow them to produce products and
subsystems based on their work for us, so this code finds its way back into the
system through them. Obviously, our top-level betting applications are too
specialized to interest many people, and the issue of security is always present.
We are mainly talking about subsystems.

A good example of this synthesis was the 20-port X.22 multiplexor card
developed for us by Mosaic Pty Ltd and now marketed by them. It provides a
very economical PC-based communications front end to our Unisys
mainframes.

Bob: What about the end users? What advantages do they get from Linux?

Stephen: The advantage for them is they don't know it's there! It's reliable—it
doesn't just fall over. It's simple for temporary staff or computer novices to
learn and use—no mouse is involved, just a very simple set of cascading menus
that are quick to learn and hard to cause trouble.

Bob: And the business of I.T.—how does that benefit?

Stephen: Linux truly helps us implement insourcing, which in turn allows us to
maintain a tight loop for developing new features in our systems. The
marketing people and top management think up new ways to bet, and we can
support their ideas quickly. We're fairly fast on our feet, and time to market is a
key issue.



All of this is done at a fraction of the cost of using a large vendor and becoming
dependent on their proprietary lock-in features and escalating support costs.
Most vendors are sales driven, after all. For example, if we buy a widget in year
0, how many of them are being sold in year 5 or 10? What motivation for
continued support is there? We are confident that Linux will keep on pumping
out the features we need, yet allow us to migrate our installed base at a rate we
can control, not because some vendor needs income from a new version. So,
the Open Source approach gives us control over continuity as well as the ability
to exclude code bloat.

Efficient maintenance of such a huge system is also a key to keeping costs
down. Sending a technician to many of the branches is a two-day affair with
plane tickets and accommodation involved. Linux allows us to remotely
monitor and maintain the systems—even install the next great version—all
over a 2400 baud/s line!

Figure 5. The Linux Team at the TABQ 

Figure 6. Linux Network Controller Glass House 

Bob: Any problems or worries using Linux?

Stephen: Adopting it in 1995 was a big step for a corporation and was
accompanied by the usual fears and objections of “where's the vendor to
support us”. In fact, that fear has turned out to be a furphy (rumour)—the
support we get off the Net is better than most large vendor's support, and our
“insourcing” philosophy lets us modify the source if we get into a tight spot.



We have had to tool up to be independent and this is the downside. We needed
to quickly develop a high level of skills and core competencies in-house and
then make sure we keep the staff. We do this in the time-honoured fashion—
we pay our engineers in the upper percentile and maintain a dual career path
for them as they mature into either management or specialist engineers. Many
companies don't provide this growth path and then wonder why their best
people shuffle off.

Some of the wars over KDE vs GNOME and Linux Standards caused us to pause
for thought—but by and large, it's a healthy battle and we would worry more if
there was apathy over these issues. We are reassured that Linux is developed
by a tight coherent community passionately concerned about the product.

Bob: What is the status quo?

Stephen: Currently, we have about 580 branch controllers installed with Linux
systems, and we will continue to cycle out old 486 QNX systems in another 50
sites. We buy top-of-the-line commodity PCs—Pentium IIs now—and harden
them on the developer's desks. As each batch of 50 or so comes in, the last lot
goes out to the branches. We then work them to death—I mentioned the
seven-year life cycle. The problem with that is we can't even donate our old
stuff to worthy causes, as our old machines are really, really old and tired by
the time we're through with them.

The ability to run Linux is obviously a prime acceptance criteria for all new
equipment.

Bob: Any other applications for Linux?

Stephen: In another project, we have been putting Linux-based “mini- TABs”
into the smaller outlets like pubs and clubs which don't justify the full system.
These are about the size of a Coke machine, and we can make them at a
reasonable cost—our counterparts in other states are not able to do this
because of the high cost of mainframe support. Linux allows us to use a true
client-server approach while preserving reliability to mainframe levels. We can
also provide more information to the end user via Linux client-server, e.g., each
screen supports 30x80 characters whereas the mainframe versions run at
24x30 (Teletext).

At the head office, we also use Linux as an authentication server for the entire
network—no bet gets placed until the remote system is authenticated by Linux.

We also have about 20 boxes running QNX4 as a communications front end to
the mainframe and talking to all the Linux boxes in the field. This is in place of



proprietary front ends costing $600,000 per 20 lines. Unfortunately, Linux
doesn't have quite enough real-time oomph to do this yet, but as hardware
speed increases and real-time features get added to Linux, we'll keep an eye on
it.

By the way, the whole head office of mainframes and front-end processors and
authentication servers is mirrored at a separate site in Queensland in case of
catastrophe.

Finally, we have about 50 Linux machines in our development area which all
run the X Window System and various desktops—we like Enlightenment, for
example. The newer development environments are a very nice plus for us and
really endorse our decision to use Linux—for example “Nedit”, which looks
much like Virtual Studio and provides excellent productivity. Things like gdb are
obviously well-used, but the nice new GUI front ends help keep us productive.

Bob: What about the Internet?

Stephen: We see the Internet as the preferred medium for the future of remote
betting—in other words, phone betting. Obviously, it provides information in
the most timely manner possible to our punters, which is the name of the
game. By contrast, newspapers provide form and odds information which is
over a day old, and radio and TV provide information only when they feel like it.
Our customers presently use both phone or Internet, depending on which is
more convenient for them. So that's a tip for punters—use the Internet for the
most up-to-date information on racing.

We use Linux as Internet and security servers to provide digital certificates for
our registered punters on the Internet. A Java applet on our betting page keeps
information on their screen up to date—data is 30 seconds old or newer. You
can't do better than that anywhere except by going into a TAB agency. The
digital certificates issued by the Linux box have a special security feature—one
we feel is essential in a financial environment—if a customer believes their
certificate is compromised (e.g., stolen), they can call and cancel it within
minutes. Not many (if any) certification authorities can provide this option.

Bob: And in the future?

Stephen: We have our telephone betting centres—call centres, really—with
about 550 operators in Brisbane and 110 on the Gold Coast about an hour's
drive south, all running on NT. We are at the testing stage of a new Linux
version, which will use a digital sound system to store all calls to huge disc
farms. This will replace the monstrous and antiquated tape recording system
we have now and provide faster retrieval—we keep the recordings for 28 days



in case of a dispute with a punter (“I didn't say put $10 on `Neddy', I said
`Freddy'”). This will be deployed late next year, and by the end of 1999, we will
be running well over 1000 Linux machines.

The back-end mainframe is being converted to run on an NT platform.
Subsequently, many of the applications written for NT are then ported to a
Linux environment. In this conversion from NT to Linux, we'll be able to take
advantage of the C++ code portability that we have always striven to maintain—
we have a common set of libraries and take great advantage of reusable C++
code. For example, every system, whether NT, Linux or QNX, uses a common
memory-based model of the entire betting system—almost an in-memory
database. It's the same on all machines and is constantly kept updated.

On another front entirely, we are thinking of moving to satellite dial-up
communications instead of leased line because Linux should be able to do this
well. This could save us a big chunk of the $2 million we spend a year on fixed
2400bps lines and would let us use 19.2Kbps into the bargain.

Figure 7. Breakfast Creek Hotel in Queensland 

Bob: Any advice to others in the corporate and government I.T. world?

Stephen: Firstly, we have found through experience that it is much better to
avoid the big bang approach to new system development as much as possible
—where we have applied incremental improvements to individual components,
we've had much greater success.

Linux suited our particular and special set of business problems in an objective
evaluation and has produced the best and most cost-efficient, functional and
reliable long-term solution. We were not fazed by the lack of a vendor standing
behind the system even though it is, in every sense of the word, a mission-
critical application. We feel that the FUD (fear, uncertainty and doubt) about
vendor support is often a poorly disguised excuse for proprietary lockin. Of
course, we have an insourcing and self-dependent philosophy which may not
suit all entities.



Our cost savings using Linux goes far beyond the area of zero licensing fees
into the less easily quantified areas of good old-fashioned reliability,
serviceability, upgradability and continuity.

Bob: Thanks very much!

Bob Hepple is a 15-year UNIX and 5-year Linux veteran of HP, Sun, Unisys and
Visa International in Singapore, Hong Kong and Australia. He originally learned
to dislike the cold in the UK. Having recently moved to Brisbane in beautiful
Queensland, he is resting between contracts. He can be reached at
bhepple@bit.net.au.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Linux Clusters at NIST

Wayne J. Salamon

Alan Mink

Issue #62, June 1999

NIST is using Linux clusters for research, benchmarking them against
supercomputers. 

The National Institute of Standards and Technology (NIST) is experimenting
with clusters based on commodity personal computers and local area network
technology. The purpose of the experimental phase of the cluster project is to
determine the viability of using commodity clusters for some of the NIST
parallel computing workload. In addition to a Cray C90 running sequential
codes, many parallel jobs are run on IBM SP2, SGI Origin 2000, SGI Onyx and
Convex supercomputers. 

Building clusters to run parallel jobs is done for several reasons. Low initial cost
is one, although it is not clear how the long-term costs associated with clusters
compare with those of traditionally packaged systems supported by
manufacturers. Another reason is availability of systems. Having a slower
system available without needing to wait is sometimes better than waiting a
long time for access to a faster system. A third reason is that free
implementations of the parallel virtual machine (PVM) and message passing
interface (MPI) environments are available for Linux. Many NIST parallel
applications rely on PVM or MPI.

Hardware Description

Figure 1 shows a diagram of the current cluster. Currently, there are 48
machines (nodes) in the cluster; 32 nodes have a 200 MHz Pentium-Pro
microprocessor, and 16 nodes have a 333 MHz Pentium II microprocessor. The
Pentium-Pro machines are built around the Intel VS440FX (Venus)
motherboard, which uses a 33 MHz PCI bus and has four SIMM memory slots.
The Pentium II machines use a motherboard based on the Intel 440LX chip set,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


also with a 33 MHz PCI bus, and 3 DIMM slots for memory. All of the nodes are
configured with a single 2.1GB hard disk supporting 512MB of swap space and
the file systems. Sixteen nodes have 128MB of memory and 32 nodes have
256MB, for an aggregate total of 10GB of memory.

Figure 1. Cluster Diagram

Sixteen of the cluster machines are connected with both Fast-Ethernet and
ATM. The remaining 32 machines are connected with Fast-Ethernet only.
Therefore, the cluster can be configured with up to 48 Fast-Ethernet nodes or
up to 16 ATM nodes, depending on the requirements of the job to be run. One
other Pentium-Pro machine is used as an administrative front end to the
cluster. This machine has both Fast-Ethernet and ATM interfaces.

The ATM interface cards are Efficient Networks ENI-155p with 512KB of
memory onboard. These nodes are connected to a Fore ASX-1000 switch over
OC-3 (155Mbps), using multi-mode fiber. For Fast-Ethernet, we use SMC
EtherPower 10/100 and Intel EtherExpress 100+ cards connected to one
Ethernet switch: an N-Base MegaSwitch 5000 with 60 Fast-Ethernet ports. The
cabling to the switch is done with Category 5 twisted-pair cable. The Ethernet
switch is connected to the intra-NIST network via a 100Mbps uplink to a router.
Both the ATM and Fast-Ethernet interfaces are configured into different
subnets, allowing us to monitor the network traffic independently. There is very
little background traffic on the cluster subnets, since the nodes are used only
for parallel application programs. Keeping non-computational network traffic to
a minimum is important when evaluating the cluster network.

The cluster nodes have been augmented with the NIST-developed MultiKron
performance measurement instrumentation (see Resources 6 and 7). The
MultiKron PCI board is equipped with a MultiKron VLSI chip, a high precision
clock and 16MB of memory. These features allow for precise interval
measurement and storage of trace data with little perturbation. Another
advantage of MultiKron is that the clocks on several boards (up to 16 at
present) can be time-synchronized, allowing for tracing of events across the
cluster with 25-nanosecond resolution. This type of measurement is important
for precise tracing of network events.

Software Description

The 32 Fast-Ethernet-only cluster nodes are running Linux kernel version
2.0.29. We've found this version to be the most stable for our configuration.
However, because support for the Intel EtherExpress 100+ is not in this kernel
release, the device driver is built as a module. The 16 ATM/Ethernet nodes use
Linux kernel 2.1.79, as this release is required for the ATM software version in
use.

https://secure2.linuxjournal.com/ljarchive/LJ/062/3006f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006f1.jpg


Development and support for the ATM software comes from the Linux-ATM
project run by Werner Almesberger at the Swiss Federal Institute of Technology
(EPFL). (See Resources 2.) We are currently running version 0.34 of this
software, having started with version 0.26.

We installed Local Area Multicomputer (LAM) (an implementation of MPI)
version 6.1 and Parallel Virtual Machine (PVM) version 3.10 on the cluster in
order to run our benchmarks in addition to the NIST parallel jobs.

We also developed a device driver to allow for user-mode programs to control
the performance counters present in the Intel Pentium-Pro and Pentium II
processors. Two performance counters are present in the Intel Pentium-Pro
architecture, along with a timestamp counter. Each counter can be configured
to count one of several events, such as cache fetches and instruction
executions. (See Resources 3.) The device driver is required because writing to
the counter control registers (and the counters themselves) can be done only
by the Linux kernel. User-mode programs can directly read counter values
without incurring the overhead of a kernel system call to the device driver.

Another tool we use on the cluster is S-Check (see Resources 5), developed by
our group. S-Check is a highly automated sensitivity analysis tool for programs.
It predicts how refinements in parts of a program will affect performance by
making local changes in code efficiencies and correlating these against overall
program performance.

We have written many small test kernels to evaluate the performance of
communication within the cluster. We have versions of the test kernels that
communicate at the raw socket, IP and LAM/PVM library levels. These small
kernels are useful in evaluating the overhead of the different communication
software levels. By using the MultiKron toolkit, the kernels obtain very precise
measurements of network performance.

Communication Benchmarks

The first step in assessing the performance of the cluster was to determine the
performance of the cluster nodes in terms of memory bandwidth. Memory and
bus bandwidth performance can limit the effective use of the network
bandwidth.

We used a NIST benchmark, memcopy, to determine the main memory
bandwidth of the cluster nodes. For buffer sizes greater than the cache size but
smaller than main memory size, the size of the buffer transferred did not affect
the transfer rate. On the 200 MHz Pentium-Pro machines, we measured a peak
transfer rate of 86MBps (672Mbps). On the 333 MHz Pentium II machines, the
measured rate was 168MBps. Both of these rates far exceeded the line speeds



of the ATM and Ethernet networks. Therefore, memory bandwidth is not a
factor in utilizing the peak transfer rates of the network.

We measured the throughput and latency of the network using netperf (see
Resources 4) and our own test kernel called pingpong. Using pingpong along
with the MultiKron allowed a direct and precise measurement of the latency
between cluster nodes. netperf was used to measure TCP and UDP
performance, while variations of the pingpong program were used to measure
the performance of the LAM, TCP, UDP and ATM socket levels.

Using the netperf stream benchmarks to measure throughput, we measured a
peak rate of 133.88Mbps (86% of the OC-3 line rate) for TCP/IP over ATM. For
TCP/IP over Ethernet, we measured 94.85Mbps (95% of the line rate). Both of
these rates are near the maximum payload rate for the respective networks.

Measuring throughput with the pingpong program provided more insight into
the network performance. While the netperf results tended to produce smooth
curves, much more variability in the throughput was seen with pingpong as the
message size increased. For messages below 16KB, Fast-Ethernet performed
better than ATM when using TCP/IP. At this message size, Fast-Ethernet is near
its maximum throughput, while ATM is not. With messages larger than 16KB,
ATM throughput increases to surpass Fast-Ethernet.

While running the throughput tests, we noticed that the TCP/IP throughput
drops dramatically when the message size is near 31KB. By using the MultiKron
toolkit to probe the network stack in the Linux kernel, we were able to find the
cause of the throughput drop. With the Linux 2.0.x kernels, transmission of the
last message segment is delayed, even though the receiver window has opened
to include room for the segment. We modified the kernel TCP software to
prevent this delay, resulting in the elimination of the performance dip. (For
details, see http://www.multikron.nist.gov/scalable/publications.html.)

Table 1. Network Latency (µs) for Message Size of 4 Bytes

To measure the latency of message transmission, we sampled the synchronized
MultiKron clocks on the two cluster nodes involved in the data transfer. The
latency is the time required for a minimum length message to be sent from one
node to another. Table 1 gives the results of the measurements for different
layers of the network stack. The values given are the one-way times from
sender to receiver. Therefore, the TCP/IP measurement includes the device
driver and switch time as well. Likewise, the device driver measurement
includes the switch time.

Table 2. Ethernet Switch Latency (µs) for Various Message Sizes

https://secure2.linuxjournal.com/ljarchive/LJ/062/3006t1.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006t1.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006t1.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006t2.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006t2.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006t2.html


The latency added by the ATM switch is greater than that of Fast-Ethernet for
small messages. However, as message size grows, so does the latency added by
the Fast-Ethernet switch, while the ATM switch latency stays constant. Table 2
shows the application layer latency when sending various-sized packets, using
both the Fast-Ethernet switch and a crossover wire. As can be seen in the table,
the latency added by the switch is between 123 and 131 microseconds. These
latency values were consistent for several switches from different
manufacturers. The cause is the buffering of each frame until it is completely
received, rather than buffering only the header bytes, then overlapping the
send and receive after the destination is determined from the frame header.
(We have confirmed this with one switch manufacturer.) Although the latency is
constant for each packet, it is easily hidden by pipelining for all but the first
packet in a burst.

Application Performance

We have run several NIST applications on the cluster. Most of these
applications are computation-bound, with little disk access. One exception is a
speech processing job described below.

Our speech processing application is a batch job submitted piecemeal to each
cluster node from a central server. This job was used to process over 100 hours
of recorded speech. The processing involves analyzing the speech to produce a
text translation. The job ran for nearly three weeks with little interruption on
the cluster. The total CPU time used for the processing was over 42 million
seconds across the 32 cluster nodes. Each piece of the job transfers 50MB of
data from the central server via the Network File System (NFS) before starting
the computation. Linux NFS has proven to be very stable. Overall, 6464 sub-
jobs were run as part of the speech processing application, with 98.85%
completing successfully.

Another NIST application run on the cluster, OA, predicts the optical absorption
spectra of a variety of solids by considering the interaction of excitons. The bulk
of the computation is based on a fast Fourier transform (FFT)/convolution
method to calculate quantum mechanical integrals. The OA application was run
on the cluster as well as Silicon Graphics (SGI) Origin and Onyx systems. Figure
2 shows the execution time of the OA application on the SGI and cluster
systems. The best runtime occurred on the 8-node Origin, at 500 seconds, while
the runtime on the 8-node ATM sub-cluster was 900 seconds. For the 16-node
ATM sub-cluster, the runtime was only slightly better, showing that the
application does not scale well beyond 8 nodes. The results show nearly a
factor of two performance difference between the cluster and the Origin for
this application, while the cost differential is more than a factor of ten. Running
the job using the ATM network decreased the runtime by 30% compared to the



Fast-Ethernet network, where the runtime was 1300 seconds. This difference is
due to the higher throughput obtainable over ATM.

Figure 2. Optical Absorption Performance

Figure 3. 3DMD Performance

The third NIST application, 3DMD, implements a three-dimensional matrix
decomposition algorithm to solve elliptic partial differential equations. This
application is considered “course-grained” because it generates large (100KB or
more) messages at infrequent intervals. This application scales well as more
nodes are added. Figure 3 shows the execution time of 3DMD on the SGI
parallel computers and the cluster. With 16 cluster nodes, 3DMD ran faster
than with the 8 Origin nodes (the maximum available on the Origin). For this
application, there is a 10% performance difference between ATM and Fast-
Ethernet, with ATM performing better.

Figure 4. NAS Parallel Benchmark Results

Figure 4 shows the execution time of the Numerical Aerodynamics Simulation
(NAS) parallel benchmarks (see Resources 8). The NAS benchmarks are
packaged as a suite of programs designed to measure the performance of
parallel computers on computationally intensive aerophysics applications. The
NAS suite is written in FORTRAN 77 using the MPI communication standard
(distributed memory). The figure shows execution times for the NAS example
problems when run on the 8-node SGI Origin, 8-node SGI Onyx and 8- and 16-
node cluster using both Fast-Ethernet and ATM. The number in parentheses
following the machine name gives the number of processors used for the
problem run. The cluster competes well with the traditional parallel machines
and ATM has an advantage over Fast-Ethernet for several of the benchmarks.

The second set of benchmarks we ran were the Stanford Parallel Applications
for Shared Memory (SPLASH) (see Resources 9). This benchmark suite differs
from NAS in that SPLASH utilizes shared memory as opposed to distributed
memory. In order to run the SPLASH suite on the cluster, we used the
TreadMarks (see Resources 10) Distributed Shared Memory (DSM) system.
TreadMarks emulates DSM via the Network File System. Figure 5 shows the
execution times for two of the SPLASH programs, Raytrace and LU. Raytrace
consists of mostly computation, with very little communication, while LU
spends a large percentage (nearly 35%) of its time communicating. The graph
shows that for Raytrace, the cluster performs very well; however, for LU, cluster
performance does not compare favorably with the parallel machines. This
performance gap is due to the high communication overhead for small
messages incurred on the cluster for the LU application.

https://secure2.linuxjournal.com/ljarchive/LJ/062/3006f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006f4.jpg


Figure 5. SPLASH LU (L) & Raytrace (R)

The purpose of running the NAS, SPLASH and other benchmarks is to get a feel
for the types of applications a cluster can run effectively. Also, for applications
similar to the SPLASH LU, where communication time is the major factor in
runtime, we need to delve deeper into the Linux network software and
determine how network performance can be improved for these types of
applications.

One other application for the cluster is the Distributed.NET project (see http://
www.distributed.net/). During periods of low activity, the RC5 encryption
software is run on the cluster nodes. Each node runs the software
independently of the others, so we can participate with any number of nodes.
We have run all 48 nodes (plus the front end) at times, with an aggregate key
processing rate of over 32 million keys per second.

Conclusion

Linux has been beneficial in our research. The first device driver for the PCI
MultiKron card was done on Linux and was the easiest to write. We use Linux to
monitor the cluster, and the tools we develop are either written for Linux first
or ported quickly from other UNIX environments. Experimenting with
computing clusters would be more difficult with commercial operating systems
because source code is generally not available. By having the ability to probe
the operating system source code, we are able to accurately measure
performance of the OS in addition to the performance of our applications.

Our experiments show that clusters compete very well with traditional parallel
machines when running distributed memory applications, generally
characterized by large messages. For shared memory applications, which tend
to communicate with many small messages, the overhead of the network has a
detrimental effect on the application performance. For both types of
applications, tuning the network parameters can be of tremendous benefit in
decreasing execution time.

The 333 MHz, 16-node Pentium-II cluster has been transferred into a
production environment. This cluster will be made available to the entire NIST
community and will be managed by the group that supports the traditional
supercomputers. We believe Linux-based clusters will provide an effective
environment for running many high-performance applications.

Resources

Acknowledgements

https://secure2.linuxjournal.com/ljarchive/LJ/062/3006f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3006s1.html


Wayne Salamon is a Computer Scientist within the Information Technology
Laboratory at the National Institute of Standards and Technology in
Gaithersburg, MD. He has worked on system software for PCs, UNIX
workstations and IBM mainframes for the past 12 years. His current research
interests are parallel computing and performance measurement. Wayne can be
reached at wsalamon@nist.gov. 

Alan Mink is project engineer of the Distributed Systems Technology project
within the NIST Information Technology Laboratory. He holds a B.S. in Electrical
Engineering from Rutgers University and an M.S. and Ph.D. in Electrical
Engineering from the University of Maryland. His research interests include
computer architecture and performance measurement. Alan can be reached at 
amink@nist.gov. 

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

mailto:wsalamon@nist.gov
mailto:amink@nist.gov
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Sending Mail via the Web

Reuven M. Lerner

Issue #62, June 1999

Mr. Lerner continues his look at building a simple, integrated mail system that
can be accessed using a web browser. 

Last month, we looked at a simple CGI program (read-mail.pl) that allows us to
view our e-mail from within a web browser. This program takes advantage of
the fact that most e-mail today is delivered to a “post office” server, from which
it is downloaded by a user's mail-reading program. Mail clients use the POP3
protocol to retrieve messages from a post office server, which means our
program can retrieve a user's mail by connecting to a server and retrieving one
or more messages. 

read-mail.pl is good enough for basic purposes, in that it makes it possible to
retrieve mail from any web browser in the world. However, while it makes it
possible to read e-mail messages, it does not provide any mail-sending
capabilities. True, many web browsers include such a capability—but many,
such as Netscape Navigator, do not.

This month, then, we will take a look at how to send mail via the web. Between
read-mail.pl (from last month) and send-mail.pl (in this article), we will have a
simple, integrated mail system that allows users to perform all rudimentary
tasks from any web browser.

Sending mail based on the contents of an HTML form was one of the first uses
to which CGI programs were put, back in 1993 when CGI and HTML forms first
arrived on the scene. As we will see, sending e-mail is not particularly difficult
from within a CGI program. However, we will look at issues related to security
as well as what we would need to do to turn these simple programs into a full-
fledged Hotmail competitor.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Basic Mail Sending

Sending e-mail from within a program is normally quite straightforward,
particularly if you are using Perl. You open a pipe to a mail-sending program,
and send it the headers and data for the message you want to send. For
instance, here is a simple program that sends a short “hello, world” message to
my address, reuven@lerner.co.il:

#!/usr/bin/perl -w
use strict;
use diagnostics;
my $mailprog = '/usr/lib/sendmail';
my $recipient = 'reuven@lerner.co.il';
open (MAIL, "|$mailprog $recipient")
die "Cannot open $mailprog: $! ";
print MAIL "From: nobody\n";
print MAIL "To: $recipient\n";
print "\n";
print MAIL "Hello there!\n";
close MAIL;

There are several things to notice about this program. First of all, we set 
$mailprog to “/usr/lib/sendmail”, the default name and location of the mail
transfer agent (MTA) on Linux systems. If your copy of sendmail is in another
location or if you are using a program other than sendmail, you will need to
change the value of $mailprog. 

Similarly, mail is sent to a single address, what is defined in $recipient. We will
discuss the issue of recipients later, when we look at the issue of program
security. Keep in mind that restricting the number of recipients to which the
program will send e-mail reduces the possibility that your program will be
turned into a mail gateway by spammers or others interested in sending
anonymous mail.

We open a connection to $mailprog using Perl's open function, which allows us
to write to a program's standard input (STDIN) by treating the program name
as a file name, and by prefacing the program's name with a | character.
Anything we print or write to that file handle will be treated as if it were sent to
the program's STDIN. Any output from the program is ignored.

Finally, notice how we insert a new line character between the final header and
the message body. As with HTTP, SMTP (the “simple mail transfer protocol”
used for most mail transfer on the Internet) requires a blank line between the
header and any data. This allows the receiving program to identify which lines
are headers and which are in the body.

Mail::Sendmail

Those of us who have been sending mail from within Perl programs were
delighted when the Mail::Sendmail module, written by Milivoj Ivkovic, was



released to CPAN (the Comprehensive Perl Archive Network, based at http://
www.cpan.org/). This module provides a portable method for sending mail
from within a Perl program, but also provides a layer of abstraction between
your program and the underlying mail system.

It is important to understand how the mail-sending mechanism works on your
computer, particularly when it comes time to debug problems with sending or
receiving e-mail. However, being able to send mail with three or four lines of
Perl from a package maintained and updated independently of your program
makes it possible to write shorter, more reliable programs. I have begun using
Mail::Sendmail in all of my programs that send e-mail, and I suggest you do so
as well, unless you have good reason to stick with the old system described
above. One possible reason not to use Mail::Sendmail is if your program will be
installed on a system without this package and on which you could not expect it
to be installed. Given the ease with which packages can be downloaded and
installed from CPAN, however, this should not deter you in a serious way.

The Mail::Sendmail module, like all other modules, must be imported at the top
of any program that uses it with a use statement:

use Mail::Sendmail;

If you have not installed the module, or if it is not installed in one of the
directories named in @INC (the path through which Perl searches when
importing modules), Perl will fail with a fatal error. 

After Mail::Sendmail is imported, sending a message becomes a two-step
process. In the first stage, define a hash in which the keys are the headers and
contents of the message. Specify the message body with the Message (or Body

or Text) key. For example:

my %mail = (To => $recipient, From => $sender,
  Message => "Hello, there!");

You can then send the mail using the statement: 

sendmail %mail;

The sendmail function is imported into the current name space automatically
with the use Mail::Sendmail instruction. Mail::Sendmail defines many other
functions as well, but none of these are imported into the default name space
unless you explicitly request it. 

As you can see, the above code is significantly shorter and easier to understand
than what we did first. The fact that it is more portable and easier to maintain
are nice additional benefits.



Moving to the Web

Now that we have seen how to send mail from within our program, we can
concentrate on how to create a simple mail-sending facility from within a CGI
program. Listing 1 shows an initial stab at send-mail.pl, which is a CGI wrapper
around the above functionality.

Listing 1.

As you can see from the top of the program, send-mail.pl imports a large
number of modules before it gets down to business. It uses strict and 
diagnostics to ensure our variables are lexicals (i.e., temporary variables
defined with my), only hard references are used, and barewords are not
considered subroutine calls. (Bareword is a Perl term for a word in which its use
in a program is unclear. Originally, any such words were simply prohibited.
Now that subroutines can be called without a leading &, barewords are
interpreted as subroutines. This can confuse programmers and lead to buggy
programs, so it is usually best to avoid them.)

Then, because this is a CGI program, we import the CGI.pm, a module which
provides us with all the CGI functionality we could imagine, useful for receiving
user input and sending output to a web browser. We also import CGI::Carp,
which provides us with improved messages in the web server's error log. By
importing the fatalsToBrowser symbol from CGI::Carp, we also ensure that fatal
error messages are sent to the user's browser, as well as the error log.
Normally, a fatal error in a CGI program results in an incomprehensible
numeric error message on the user's browser. While the output from 
fatalsToBrowser might not seem much more useful or comprehensible to a
non-programmer, it is not as scary as a set of numeric codes. Also, it makes the
program much easier to debug than it would be otherwise.

Finally, we import Mail::Sendmail as described previously.

Other than retrieving three HTML form parameters (sender, recipient and 
message) and using them in the invocation of Mail::Sendmail::sendmail, this
program contains little you have not seen before. We do want to ensure the
mail is sent before reporting it has been, so we use die to exit with a fatal error;
it will end the program after printing an error message to the user's browser
and the error log.

We can determine if the mail was sent by checking the return value from the
“sendmail” subroutine. If it returns true, we know the mail was sent. If it returns
false, the program stopped before it was sent. Here is one simple way to
accomplish this:

https://secure2.linuxjournal.com/ljarchive/LJ/062/3449l1.html


if (sendmail %mail)
{
# Print a message for success
}
else
{
die "Error sending mail: $Mail::Sendmail::error \n";
}

The variable $Mail::Sendmail::error (i.e., the variable $error inside of the
package Mail::Sendmail) contains a detailed description of why the mail was not
sent. Since the sendmail subroutine returns true when it succeeds and false

when it fails, the above construct tells Perl, “try to send the mail contained in 
%mail--and if you cannot, exit and print a message describing why it failed.” 

If the mail is sent successfully, the user is returned a message indicating the
program performed its task. It also prints the contents of the mail. Giving the
user detailed feedback of this sort is always better than printing a simple
“success” message, since the user might not be sure which e-mail message is
being referenced.

Creating the Form

Now that we have a CGI program capable of sending mail, we need some way
to invoke it. We could pass parameters as name-value pairs in the URL, but that
is difficult and not very user friendly. We will thus send the name-value pairs
using POST, which sends them to the program's standard input (STDIN). POST
input to a program is generally sent from an HTML form. Here is a sample form
that invokes send-mail.pl:

<HTML>
<Head>
<Title>Send e-mail!</Title>
</Head>
<Body>
<H1>Send e-mail!</H1>
<Form method="POST"
  action="/cgi-bin/send-mail.pl">
<P>Sender: <input type="text" name="sender"></P>
<P>Recipient: <input type="text"
  name="recipient"></P>
<P>Message:</P>
<textarea cols="60" rows="20"
  name="message"></textarea>
<P><input type="submit"></P>
</Form>
</Body>
</HTML>

This form has three elements, named sender, recipient and message. These are
the same elements we retrieved with the param method in send-mail.pl. If you
modify the names of the parameters in the HTML form, make sure to modify
the program as well, or the form elements will not be picked up. 

All HTML form elements are sent as name-value pairs in which the value is a
text string. The CGI program receiving and interpreting the data does not know,



and furthermore does not have to know, whether the input field was a text
field, a text area, a check box, a radio button or a pull-down menu.

Indeed, we can even substitute a hidden field—which does not appear on the
web browser and cannot be changed by the user—for a text field, which comes
in handy if we want to hard-code a value, such as that of the recipient. Simply
replace the recipient line with

<input type="hidden" name="recipient"
value="reuven@lerner.co.il">

and all mail will be sent to my address. 

Similarly, if you want to allow people to send mail to a number of addresses,
but still restrict them somewhat, you can use a selection list:

<select name="recipient">
<option value="reuven@lerner.co.il">Reuven
<option value="eviltwin@lerner.co.il">Reuven's evil twin
<option value="info@linuxjournal.com.com">LJ editor
</select>

Changing our HTML form in any of these ways requires no changes to our CGI
program. Once again, send-mail.pl expects to receive a name-value pair in
which the name is recipient and the value is a valid e-mail address. 

With the above form and CGI program in place, we should be able to send mail
to any e-mail address on the Internet.

Preventing Spam

The problem with the above form is it truly allows anyone to send mail to any
address on the Internet. Furthermore, it allows the sender to pretend to be any
address on the Internet. This is precisely the sort of tool spammers love to
exploit. If you were to put our original version of send-mail.pl on your site, you
would eventually discover someone was using your server and bandwidth to
send their spam.

Several possible ways can be used to prevent this. One is to remove the
possibility of sending mail to users or domains outside of a selected list. For
instance, we can define a hash where the keys are approved e-mail addresses:

my %approved_recipient = ('reuven@lerner.co.il' => 1,
  'info@linuxjournal.com.com' => 1);

Using a hash allows us to check the status of any e-mail address in a constant
time interval, regardless of the number of addresses. If we were to use an
array, for example, we would potentially have to search through the entire
array before we could be sure of an address's status, meaning that the time



necessary to perform such a test would grow in proportion to the number of
elements in the array. 

We can thus check to see if an address is approved by inserting the following
code:

if (!$approved_recipient{$recipient})
{
die "Unapproved address \"$recipient\": Mail" .
 " was not sent.\n";
}

A version of send-mail.pl with the above code can be found in Listing 2 in the
archive file (ftp://ftp.linuxjournal.com/pub/lj/listings/issue62/3449.tgz). 

We can similarly allow mail to be sent to any address within a particular domain
by putting all of the approved domains inside an array:

my @approved_domains = ('lerner.co.il'
       'linuxjournal.com');

We then create a variable, $match_found, which defaults to 0: 

my $match_found = 0;

$match_found will be set to 1 only if one of the approved domains matches the
domain in $recipient. We check this with a short loop: 

foreach my $domain (@approved_domains)
{
if ($recipient =~ m/$domain$/)
{
$match_found = 1;
last;
}
}

We use last to break out of the loop when we find a match, in order to save
some time. If you know certain domains will receive mail more often than
others, you should put them at the beginning of @approved_domains, since the
earlier an item appears in that array, the sooner the match will be found. 

We then send mail only if $match_found is true (i.e., non-zero). If $match_found

is 0, we print an error message:

# If the domain was not approved
else
{
die "Mail was not sent: The recipient's domain " .
 "is not approved.\n";
}

The version of send-mail.pl in Listing 3 in the archive has these additions. 



Checking for Errors

If we want our program to be robust, we must do more than check for security
violations. We must check for input from the user that might not affect security,
but might lead to bugs or other unpleasant surprises.

For instance, if we invoke send-mail.pl directly from a URL, for example

http://www.lerner.co.il/cgi-bin/send-mail.pl

the program will report that the mail was sent with a blank sender, recipient
and message. This is bad for two reasons. First, no mail was sent, since
necessary headers were not assigned any values, so the program is providing
us with incorrect information. Second, we should never get to the point where
blank data from the user is accepted as input for mail. 

We can prevent this situation by ensuring send-mail is always invoked with
POST, and that $sender, $recipient and $message are non-blank. If any of these
is equivalent to the empty string, we exit prematurely from the program, telling
the user each must have a non-blank value. Once again, using die is better in
debugging environments than in production code, simply because of the style
of error message it produces. There is no reason why you could not forward
the user to an error message page, or print a nicely designed page describing
what was missing, rather than simply dying.

Competing with Hotmail

Between send-mail.pl and read-mail.pl, we have created a small system to send
and receive e-mail. Is this enough to compete with Hotmail creating our own
small web-based mail service? The short answer is “no”, although the longer
answer is that it is probably enough to suit most purposes.

Part of the problem is these two programs are run using CGI. While CGI is
portable across platforms and languages, it is inherently slow, requiring the
web server to create a new process each time the program is invoked. While
this is more than adequate for lightly loaded machines, it quickly becomes a
performance drain as the number of hits increases.

Each HTTP server has developed its own native interface that allows you to
attach your program to the server process. Since Apache is free software,
several such interfaces have been developed for it, including mod_perl and 
mod_php. The former allows you to write CGI-like programs in Perl, attaching
them to the server process. This means your functionality becomes a
subroutine within the server program, rather than an external program that
must be invoked separately. The speed difference between a program running



under mod_perl and the same functionality in a CGI program is staggering and
should convince just about any die-hard CGI user to switch to mod_perl.

A site wishing to compete with Hotmail would probably want to use mod_perl
or a similar server-specific API in order to get the maximum performance out of
its hardware.

Aside from performance, another issue is where the mail is to be stored. The
programs we have discussed, read-mail.pl and send-mail.pl, expect the user's
mail to be stored on a POP server elsewhere on the Internet. Hotmail and
similar services have their own POP servers for incoming mail, as well as their
own MTAs (usually sendmail, although other MTAs are apparently better for
high-volume mail servers) running on their systems.

However, Hotmail will allow you to retrieve mail only from their own POP
servers, while read-mail.pl will allow you to retrieve mail from any POP server,
including one that would normally not have a web interface. Whether you
restrict mail checking by users to your own system, a number of servers within
your organization or anywhere else is up to you.

Finally, services such as Hotmail survive due to advertising, and one of the most
popular ways to advertise is to add a short note to the bottom of each message
indicating which web-based mail service was used to send it. We can easily do
that by concatenating our own footer to the message the user sends with these
instructions:

my $footer = "-\nBrought to you by ReuvenMail\n";
my $message = $query->param("message");
$message .= $footer;
my %mail = (To => $recipient, From => $sender,
  Message => $message);

Now everyone will know which mail service you were using when you sent mail
from your web-based system. This functionality is included in the final version
of the program, Listing 3 in the archive file. 

Finally, Hotmail has millions of members, which means it is relying on more
than a single computer running Linux for mail delivery. Operating a single
system for sending and receiving mail is not nearly as hard as creating a large,
scalable system. If you are interested in truly competing with Hotmail, you will
need capital investment and a good knowledge of networking protocols, in
addition to Linux, Apache and the above programs.

Conclusion

Sending mail from an HTML form is one of the oldest uses of the CGI standard.
Many such programs have been created, although they have not always been



careful to restrict spam or other abuses. As we have seen, it is possible to get
around most of these problems, but it is important to think about them before
putting your system on-line.

By combining a simple mail-reading program with a simple mail-sending
program, we can create a basic web-based mail service that is as open or
closed as we desire. Perhaps these programs do not scale as well as Hotmail,
but they do give us some insight into how that service (and similar ones) work,
as well as what we might need to do with our own programs in order to make
them as useful as possible.

Resources

Reuven M. Lerner is an Internet and Web consultant living in Haifa, Israel, who
has been using the Web since early 1993. His book “Core Perl” will be published
by Prentice-Hall in the spring. Reuven can be reached at reuven@lerner.co.il.
The ATF home page including archives and discussion forums, is at http://
www.lerner.co.il/atf/.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/062/3449s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Focus on Software

David A. Bandel

Issue #62, June 1999

nmap, Nessus, Saint and more. 

Most of you are likely running the new Linux kernel. Whether from your
favorite distribution or downloaded from the Web, this will seem like a small
transition compared to what's coming. As I write, I am testing the new Caldera
OpenLinux 2.2 beta. This distribution comes with not only a new kernel, but a
new glibc as well—yes, a new system library. By publication time, I'm sure other
distributions will be offering glibc-2.1, and I'll have heard much wailing and
gnashing of teeth. 

Several distributions, including Red Hat and Debian, have already included glibc
distributions, based on glibc-2.0.7. As I remember, the glibc-2.0.x libraries were
marked “experimental”, so if you experimented, oh well. You say Red Hat didn't
mention the glibc library included in 5.x was experimental? I guess we all need
to pay closer attention to those small details.

The new glibc-2.1 is different, and in some cases, incompatible. After installing
the beta, I attempted to build ssh with no luck. A function call by needed ssh
was missing. Also, my 128-bit encryption glibc Netscape binary wouldn't start—I
had to install the libc5 binary of Netscape. These things should be fixed by the
final release. This month, I'm still building with glibc-2.0.7.

nmap: http://www.insecure.org/nmap/index.html

nmap is a utility for mapping your network and open ports on the network. It is
a very powerful, flexible, security auditing tool. While nmap has a number of
legitimate uses, many options are available to perform “stealthy” probes of
networks, something of questionable value. This tool will almost certainly
become a favorite of “script kiddies” everywhere, so scanning your own
network in advance to learn what they'll find will save you some headaches. At
least, it will if you use the information to close/monitor any open holes that

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


were found. Several of nmap's options appear to be aimed at not triggering
monitoring tools like courtney to report attacks. As a network and systems
administrator, I consider probes of my systems and networks to be overtly
hostile acts. At best, they will gain you a message to your zone technical
contact; at worst, an entry in the hosts.deny file, sendmail access.db reject list
and an ipchains drop packet entry. I know I'm not alone. Required libraries are
libnsl and glibc.

Nessus: http://www.nessus.org/

Nessus is a highly configurable and very powerful security auditing tool. Like
nmap, it will probe your network, looking for holes. Unlike nmap, Nessus
requires a graphical interface, but provides a slightly more user-friendly report.
You'll need to supply a bit more information to start it up, as it works in a
server/client configuration. Nessus is also less subject to being “hijacked” by
non-privileged users. If nmap is on your system in an accessible place, anyone
can run it. Since the Nessus client must connect to a Nessus server and the
server is password protected, ordinary users cannot make use of it as easily.
You can make it even more secure by not leaving the server running. Required
libraries are libX11, libXext, libXi, glibc, libdl, libgdk, libglib, libgmp2, libgtk, libm,
libnsl and libresolv.

Saint: http://www.wwdsi.com/saint/

Saint is the reincarnation of SATAN. This particular tool will be comfortable to
those who have used SATAN, but the license agreement bears reading. Based
on the wording, I'd say their definition of “commercial” is significantly different
from most definitions. The agreement appears to be more anti-litigation than
restrictive of the use of the software. Still, it is a good tool. It requires the Perl 5
library and a web browser.

nettest: http://zorro.pangea.ca/~renec/nettest.php3

nettest is a fairly simple and extremely useful Perl script that will monitor any
number of hosts for connectivity. It won't watch individual processes, but it will
ping the host at designated intervals. If it notices a particular host has stopped
responding (for whatever reason), it will take some action. That action may be
no more than logging the event in syslog or e-mailing one or more addresses. If
you know Perl, you can make it do even more. nettest can also be configured to
take the same action when connectivity is restored. It requires the Perl library.

xfreecell: http://www2.giganet.net/~nakayama/



Freecell has been one of my favorite games for as long as I can remember. The
addicting part of this game is that you know it's theoretically possible to win
every game; however, I've yet to see anyone do it. While my average stays fairly
high, occasionally I outsmart myself and just can't win—that doesn't stop me
from trying. Fast animations give hours of fun. Required libraries are Xext, X11,
stdc++, libm and glibc.

Ted: http://www.nllgg.nl/Ted/

Finally—a text editor that uses RTF (Rich Text Format) as its default format. This
editor is a nice, very simple text processor. It will read ASCII text and RTF
formatted files and write RTF, ASCII and HTML. I didn't test the HTML feature. I
was mainly interested in the fact that it handles RTF, the one format any true
word processor will understand. Spelling modules are available for Ted in
English (American and British), Dutch, German, French, Spanish and
Portuguese. Required libraries are glibc, libtiff, libjpeg, libpng and libgif.

David A. Bandel (dbandel@ix.netcom.com) is a Computer Network Consultant
specializing in Linux. When he's not working, he can be found hacking his own
system or enjoying the view of Seattle from an airplane.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Making Money in the Bazaar, Part 1

Bernie Thompson

Issue #62, June 1999

A look at the business models in use today and how they work. 

Open Source is software which has been freed. It allows bits to be copied and
reused endlessly. It allows inspection of the source code. It allows new
innovations to be built upon old, without having to duplicate past efforts. It is
free software with the emphasis on freedom. 

This past year has seen an explosive rise in visibility for this curious market. The
computer world at large has gained at least a limited understanding and
respect for its workings. Much of this attention would have been unimaginable
even a year or two ago.

During this time, Open Source has been put under heavy scrutiny. While certain
technical benefits are undeniable, every analysis invariably confronts two
simple, critical questions: “How does one make a living on free software?” and
“Who is motivated to innovate?”

The strength of the answers to these questions will determine if Open Source
will achieve its full potential for the greatest possible audience. It must be
economically viable.

I will attempt to answer these two questions by surveying the field of current
business models and analyzing their financial strength. I will also speculate on
future innovations that may alter these dynamics.

Business Models

Money rests on the axiom that every man is the owner
of his mind and his effort ... Money permits you to
obtain for your goods and your labor that which they
are worth, but not more ... Money is your means of
survival. 

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


—Ayn Rand, Atlas Shrugged

The obvious challenge of Open Source is that it may be copied freely, even if
purchased initially. So a $10 Linux disc may legally be used to install one
machine or a thousand machines. At first glance, it would seem no incentive
exists to put effort into improving such a product. Because of this
characteristic, Open Source is often equated with a kind of communism: a
system that offers something for nothing and exploits the labor of others
without rewarding them; in short, a system that is unsustainable because it
causes people's self-interest to conflict with the greater good. 

These concerns should not be dismissed out of hand, nor taken as factual. The
truth is much more complicated. Central to these concerns is the lack of
exclusive copyright protections. Copyright and patent laws are not inherently
part of the free market; they are intended to create limited monopolies for the
companies which own the rights. This is done to reward research and to
encourage innovation.

Open Source is a voluntary system that waives exclusive ownership of software
in exchange for other benefits. These benefits include wider adoption, faster
collective innovation and a level competitive playing field. This makes for a
frictionless, dynamic and highly competitive market without the very profitable
“vendor lock-in” that is facilitated by traditional copyrighted software.

Despite the resulting competitiveness, several business models have proven to
be profitable. These models leverage the unique new possibilities afforded by
Open Source, in return for their sacrifice of certain copyrights.

What is still unclear is how these models will generate as much innovation and
value as traditional software companies, given the handicap that a person's
work can benefit his competition as much as it benefits himself. As we'll see,
one of the surprising things about free software is where the innovations have
originated.

In the following sections, I'll introduce the markets that are producing
innovation and jobs today. These are the research, service and customization
economies and the many business models that fall into these groups. Nearly all
companies are hybrids of several different business models.

Table 1.

The Research Economy

Open-source corporations are important growth engines, but to date, they
have built mostly upon the efforts of others. The bedrock of the market is the

https://secure2.linuxjournal.com/ljarchive/LJ/062/3318t1.html


thousands of individual students and moonlighting professionals who make
small and large contributions every day.

These developers are not paid for their efforts. They begin a project with no
promises or commitments. They work at their own pace, use their own
judgment and set their own priorities. They are the university researchers and
basement scientists of software, working together to make their contribution to
the world.

Often, these developers are only learning or honing their craft, so many
projects fail. Yet out of this soup of individual and group efforts rises some of
the best software available today.

Through the Internet, these successful efforts can be instantly copied and put
into use world-wide. They can be enhanced and customized by thousands of
others. They can continue to evolve like an organism, adapting to new software
and hardware architectures as the years go on.

The first and most unshakable answer to “Who will innovate?” is the students
and moonlighters, motivated by their desire to learn and create and inspired by
the energy and clarity of tackling new problems. The profit-oriented market
may fail, but these software research activities will go on. Slowly, surely, they
will continue to add to the body of free software available to the world.

Yet despite the best efforts of the students and moonlighters, their software
has common flaws. Development goals are driven by the author's own needs,
resulting in software “by developers, for developers”. The threshold at which a
developer is satisfied with ease of use is much lower than for typical users.
These are truly research projects, with all the beauties and warts that implies.

The Service Economy

In the cases where beauty has outweighed warts, a critical mass of technical
and non-technical users has been built. Apache, Linux, Perl and many other
programs have made this breakthrough to mass market utility. This expanded
base of consumers has driven the need for many support services built around
the software. These services add polish and value to the base provided by the
initial project.

No one is required to pay for any services. Given only a Net connection, they
can download what they need and figure everything out themselves. However,
many consumers find their time more valuable and therefore seek services to
make their lives easier. This is where “commercial” Open Source steps in to
distribute the software, provide technical support and educate users.



Distribution

The Internet is great for downloading small software, but for larger products it
is too slow. Also, finding the software you want among the jungle of projects on
the Web can be difficult.

From this need rose companies like Red Hat, Caldera, SuSE, and Walnut Creek.
On one convenient CD-ROM, you have an organized collection of the best
available software applications. These companies are achieving significant
revenue and earnings with these services.

Opportunities exist for further specialization. LinuxPPC has made a solid
business out of focusing on the PowerPC market. A small company could take
this further by taking one of the most popular (Dell, Linux, eMachines) PCs and
producing a distribution that is tailored and tuned to that hardware. It could
guarantee that all devices are recognized and install flawlessly. It could
optimize every program to the particular processor used on that machine. You
could imagine Intel co-marketing and co-developing with a software company
to optimize for their latest chips.

Open Source can be a key in the drive towards mass specialization of computer
products and services. As the overall size of the market increases, more
opportunities will be created in these small niches and sub-niches. All of this is
made possible by the full access to source code that free software provides.

Technical Support

When a single company owns exclusive rights to a software product, it is
obvious where the most informed technical support comes from: if you buy a
Microsoft product, you go to Microsoft for technical support.

The fact that Open Source does not have an exclusive support provider has
repeatedly been portrayed as a weakness. This is a fundamentally flawed
notion. Rather, Open Source allows a whole market of support providers to
compete on a level playing field of equal access to the code.

Through this heightened competition, the level and quality of support is
capable of rising above the best standards of today's closed software market.

Red Hat, LinuxCare and many other companies and individual consultants have
stepped up to serve this market. Early in 1999, IBM recognized these
extraordinary opportunities and announced Linux support and consulting
services. The competition between these companies will become intense, and
customers will be well-served.



If open-source support services can achieve their full potential, it will become a
major selling point for corporate users and consumers. Innovations in
providing these services will provide the foundation for many viable new
businesses.

Education

O'Reilly & Associates has built a booming book publishing business which
topped $40 million in 1998. More than half of this revenue was from books
about free software topics.

As the market grows in size, more educational services will be needed. These
are significant opportunities, since any educator, author or consultant can
delve into the inner workings of the code to produce definitive training
materials for a subject. By working on and teaching about specific areas, a
valuable reputation can be created. (See Table 2, Linux Consultant Survey.)
Several of the most successful consultants built their businesses by being a
recognized world-wide expert in a particular technology.

The Customization Economy

The next step beyond servicing existing software is the creation of new
applications to solve outstanding problems. This may be in the form of
hardware devices that come preconfigured for a particular need. Or it may be
through employees or consultants who configure and enhance software for
particular needs.

In a world dominated by a single vendor, there are limits to the innovations a
new product can provide because of high prices, too few features, too many
features, logo requirements, etc. Many interesting new applications are
suddenly possible when these shackles are removed. You just need freedom to
customize.

Hardware Bundles

Hardware preloads and bundles are some of the most compelling uses of free
software, because the cost of developing or enhancing free software for the
machine can be included in the price of the hardware.

One example is the Cobalt Qube (http://www.cobaltnet.com/). This is a space-
age blue 18.4x18.4x19.7cm server appliance running Linux on a RISC processor.
It is a general purpose workgroup server for e-mail, Web, etc. Having full access
to the Linux source code gave Cobalt the capability to fully customize the
software for this uniquely simple but very powerful hardware platform. (See
“Cobalt Qube Microserver” by Ralph Sims, October 1998.)



Another is the Snap! network storage server from Meridian Data (http://
www.meridian-data.com/). It's a fixed-function server appliance that shares disk
space on the network. It is built from custom hardware combined with open-
source software. Consumers don't need to know it uses free software; they just
need to know what it does. Customers expect the price of network storage to
scale with the price of disk storage, so the hardware and software costs of
using a proprietary software system could have greatly reduced the
attractiveness of the product.

Obviously, one big advantage is having no per-device software royalty. This is
particularly true for price-sensitive, high-volume products. In a few years, we
may find dozens of companies embedding open-source operating systems and
applications on millions of small, fixed-function hardware devices.

IT Professionals

Beyond hardware devices, there is a need to customize and adapt software
applications to the exact business processes and needs of an organization.

This always requires some custom work. Most medium and large organizations
have a crew of IT professionals whose job is to customize hardware and
software to make the business run more smoothly. These professionals like to
start with the most functional products possible and customize from there. This
has meant proprietary software in most cases.

Recently, open-source software has achieved levels of functionality that match
proprietary software in many cases and has the advantage of not being tied to
one vendor for support or product updates.

Rather quickly, it may become cost-effective to customize free software, rather
than pay for thousands of licenses of commercial software on which to build.
This shift in the market will require a growing number of professionals who
specialize in open-source software.

This is perhaps best reflected in the salaries of IT Professionals. A 1998 salary
survey of 7189 professionals asked which operating system they primarily
used. Of those who reported Linux as their primary OS, their salary was
$61,027 US vs. an overall average of $60,991. Linux salaries had increased
16.5% from the previous year, representing the fastest salary increase of any
system (source: Sans Institute).

In-house staff is not the only option. Again, because of the freedom to inspect
and study the software down to the lowest levels, a competitive industry is able



to grow to serve whatever needs arise. The resulting alternative to in-house
staff is a competitive market of independent consultants.

Consultants

When the cost of the software goes to zero, the value is in customizing for
specific problems. Consultants already make their living providing these per-
hour or per-project services. Open Source is not a sacrifice; it is an opportunity.

One example is comprehensive support. Most business want a single point of
contact to take full responsibility for getting a project done. With closed source,
contractors are at the mercy of bugs and limitations in the operating systems
and applications they purchase. In effect, they cannot guarantee success. They
do not have full control of the technology.

With Open Source, they have complete access to solve every problem, no
matter what level or layer it occurs in. A small company with a skilled force of
engineers can provide a level of comprehensive application-to-operating
system service that only IBM or HP or Sun can provide today, and probably at
much lower prices.

To get an understanding of the size and health of the Open Source consulting
market, those registered in the Linux Consultants HOWTO were surveyed. They
were asked the following questions:

1. How many consultants at your company are involved with Open Source
work?

2. Approximately how much money did your company (or yourself, if
independent) earn in 1998 on Open Source-related work? (Convert to US
dollars)

3. In 1999, based on numbers from recent months, how much do you expect
this to increase/decrease? (as a percentage)

4. In 1999, do you believe it is possible to make a living doing Open Source
consulting work? (yes/no)

This is a very diverse group of VARs, integrators and consultants. Over 50% are
from outside the U.S., where the cost of living may sometimes be lower. In
most cases, open-source work is just a piece of the total business. While this is
certainly not a scientifically rigorous study, it does give some flavor of the
market. 

Table 2.

https://secure2.linuxjournal.com/ljarchive/LJ/062/3318t2.html


A key point from the survey is the importance of being a “jack of all trades.” You
must focus on serving the needs of the customer, including doing work on
closed source. In 1998, the median earnings per consultant on Open Source
alone were not enough to make a living, and only 12.7% of the consultants
made more than the $61,027 salary of IT professionals mentioned above.
Business has picked up dramatically in recent months, however. As a whole, the
consultants were very bullish on the coming year.

Figure 1. Survey: Distribution of Earnings 

In the previous sections, we've covered the current business models that
provide a living for employees, and innovations for consumers. There are
certainly strengths, but the market is still tiny compared to traditional shrink-
wrapped software. Young companies with new ideas are needed in order to
grow the market.

Funding New Companies

Capital is the fuel for companies that will serve any new market. This money
may come from the on-going operations of the business or from banks or
investors. What is the current environment for getting this funding?

Venture capitalists, the investment partnerships that fund high-risk/high-return
companies, are skeptical so far. Their analysis of these opportunities keeps
coming back to a critical point: Open Source, by definition, eliminates the
barriers of entry to a market. How can a company build a sustainable market
advantage if their work can immediately be used by a competitor?

Table 3.

Given this limit on the upside, only a limited number of open-source companies
have received funding. These companies have identified key factors to protect
them from competitors. For Red Hat, it is a strong brand. For Sendmail, it is
having an open/closed mix in their software product line. For a company like
Cobalt Networks, it is combining closed hardware with open software. As this

https://secure2.linuxjournal.com/ljarchive/LJ/062/3318t3.html


market matures, more companies may achieve profitability and attract
investment dollars for everyone.

Until then, companies must bootstrap themselves. Ironically, this is feasible
because of those same low barriers to entry that scare off investors. An open-
source company can build on the past efforts of others, meaning less capital is
required to start the company.

Problems to be Solved

In summary, what are the problems that companies must solve in order to
grow the market in new directions?

• The financial motivation for innovation must be stronger. Most of the
current successful business models other than consultants make money
off “secondary” services, rather than the software development itself.

• Open Source is still largely “by developers, for developers”. To achieve
mass market success, it must become more customer-driven and
consumer-friendly.

Traditional software products harness the free market to solve these issues.
Consumers pay to buy a software product if it meets their needs, which means
it must be very polished. Successful products are profitable for the companies
that create them. Unsuccessful products die off. Through these mechanisms,
good developers make a living and consumers get good choices. 

Open Source needs to create systems to provide these consumer checks and
balances.

The Search for Solutions

The business models described throughout this article are by no means a
comprehensive list. This is a young market we are only beginning to
understand. It could yet defy the skeptics and evolve into something that serves
customers better and is financially strong.

Part two of this series will explore one particular possibility in this universe of
interesting but unproven ideas—a consumer co-op for software contracts. It
uses the Web to let consumers commit funds up front to pay for the
development of specific applications, feature enhancements or bug fixes critical
to them. Resources are pooled, so each person pays only a small portion of the
total cost. It is a system compatible with, and tailored to, Open Source. I will
analyze this idea in detail, describe an attempt to create a web service which
provides the necessary mechanisms and speculate how this system might
affect the progress of the open-source market.



With this idea and many others, the open-source market is a fascinating mix of
possibilities and dangers. In recent years, it has grown from thousands to
millions of users. Several profitable companies are now serving the needs of
these consumers.

The next few years will certainly see continued innovation from the open-
source research community. From the business side, it remains to be seen
whether the current momentum will continue or be struck down by market
realities. It may very well depend on the innovations created by the upcoming
generation of open-source entrepreneurs. It's a free market. May the best
products win.

Bernie Thompson has worked in both “evil empires”: IBM and Microsoft. He
also was published in the very first issue of Linux Journal. Please send any
comments or requests to bernie@veriteam.com or see http://
www.veriteam.com/.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

IP Bandwidth Management

Jamal Hadi Salim

Issue #62, June 1999

A look at the new traffic control code in the kernel and how it aids in bandwidth
management. 

The success of the Internet is attributed mainly to the simplicity and robustness
of the protocol that ties it together, IP (Internet Protocol). Lately, everyone
wants to run on IP. Major drivers include telephone companies wishing to
replace traditional circuit-switched voice networks by carrying voice on IP
networks, and multi-site corporations wanting to replace their dedicated
connections with virtual private networks (VPNs) over shared IP networks. 

However, IP suffers a small handicap. Unlike protocols such as ATM, it treats
everyone equally. All data that goes through IP networks is equally forwarded
on a best-effort basis. What if I was willing to pay $2 more a month so
customers could get my web pages loaded about half a second faster? What if I
was willing to pay a little more so I could have a coherent audio conversation,
across the Internet, with someone across the Atlantic? In both instances, those
particular willing-to-pay-more packets will have to be treated more fairly for
this to work, thus, IPs equality for all fails. Now, the new big buzzword is here: 
Quality of Service (QoS), that is, trying to streamline IP to meet these new
requirements. Although not a new concept per se, QoS has gained more
momentum lately due to the interest of large corporations in using IP.

QoS means different things to different people. An order of a burger and fries
at McDonald's is cheaper than at a fancy restaurant, where you are served a
glass of water and lots of courtesy before your order arrives. You pay more at
the restaurant for the QoS. Someone might argue that the QoS is better at
McDonald's because you get served faster. Another analogy is the airline
model, where the same plane has economy and first-class customers. In
simplistic terms, one can define QoS as paying more to get better service. As
such, it is a good way for the Net to be self-sustaining.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


An implication embedded in this is that the socialist days of the Internet are
over. Socially, the advent of IP-QoS is already being blamed for introducing a
caste system on the Internet: the “bit-haves” and “bit-have-nots” are becoming
reality.

The ability to divvy up bandwidth owned by a service provider for QoS is
referred to as “bandwidth management”. Several techniques have been
proposed and implemented over the years. The Internet Engineering Task
Force (IETF) has in the past proposed integrated services, via RSVP, which is
host driven. RSVP has failed to take off as a widely deployed standard, mainly
due to scalability issues. Currently, the IETF is pushing a new solution known as
differentiated services (diffserv), which gives more control of bandwidth
management to network owners. This article will not delve into the details of
the two techniques. The good news is that both are currently supported in
Linux.

The unsung hero of the new 2.1.x Linux traffic control (TC) code (and much
more) is Alexey Kuznetsov (kuznet@ms2.inr.ac.ru). Alexey invested a great deal
of thought in the design in order to make it extremely flexible and extensible.

What I describe is just the tip of the iceberg of the possibilities presented by
Linux traffic control, without going deep into detail. The intended scope is to
show via a simple example how one could unleash the power of Linux traffic
control.

Primitive Bandwidth Management

The TC features give ISPs the ability to manage (or carve) their bandwidth as
they see fit. In the past, there have been other less-organized ways of doing
this. The ISP could bandwidth-limit the customer's access rate by selling
services based on interface capabilities, e.g., 28.8 vs. 56Kbps modems or 1 vs.
3Mbps xDSL modems.

Another more innovative but less ambitious (relative to TC) way of rate-limiting
bandwidth is to use Alan Cox's shaper device. The shaper device is first
attached to an already configured network device (e.g., Ethernet) using the 
shapecfg utility, which is also used to configure the shaper's speed. The next
step is to use the ifconfig utility to configure the shaper to have the same IP
address as the device to which it is attached. The final step is to map the
packets to be treated by the shaper; this is known as classification. This is done
using the common route command, pointing the route in which the packets are
to be conditioned to the shaper. The advantage of the shaper is that it also runs
on the 2.0.x kernels (included from 2.0.36 onwards and available as a patch for
earlier kernels). The shaper's limited classification capabilities can be enhanced



in the 2.0.x kernels by using Mike McLagan's (mmclagan@linux.org) patch to
allow routes to be specified by source/destination pairs. The new TC
capabilities encompass shaping as well as a great deal more.

Another technique to enable bandwidth management is to use the multi-
routing table capabilities implemented by Alexey Kuznetsov. Linux 2.2 has a
new feature that allows a single Linux box to have multiple routing tables. In
essence, one could have a special routing table for a higher-paying customer
and redirect their traffic through higher-bandwidth or less congested devices
(e.g., to a T3 rather than an ISDN line, both of which are headed the same way).
Perhaps the best-kept secret in Linux bandwidth management is that the
Apache web server has a bandwidth limiting module, mod_throttle, to rate limit
individual users as defined in a config file. For details, see http://
www.bigrock.com/~mlovell/throttle/.

2.1.x Traffic Control

The Linux TC conditions packets after the next hop has been decided, i.e., after
the forwarding code has decided which interface the packet will go out on. This
means that only outgoing packets are subjected to the TC. The TC consists of
three building blocks.

The queueing discipline can be thought of as the traffic/data-packet manager
for a device. It encapsulates within it the two other major TC components and
controls how data flows through them. Only one such managing component
can be attached to a device. Currently, a few device queueing disciplines are
available to manage devices, including class-based queueing (CBQ), Priority and
CSZ (Clark-Shenker-Zhang). An example configuration with CBQ will be shown
later.

The class(es) are managed by the device queueing discipline. A class consists of
rules for messaging data owned by that class. For example, all data packets in a
class could be subjected to a rate limit of 1Mbps and allowed to overshoot up
to 3Mbps between the hours of midnight and 6AM. Several queueing
disciplines can be attached to classes, including FIFO (First-In-First-Out), RED
(Random Early Detection), SFQ (Stochastic Fair Queueing) and Token Bucket. If
no queueing discipline is attached to a device, basic FIFO is used. In the
example shown later, no specific class queueing disciplines are attached, thus
defaulting to simple FIFO. CBQ, CSZ and Priority can also be used for classes
and allow for subclassing within a class. This shows how easily very complex
scenarios using TC can be built. The queueing disciplines managing classes are
referred to as class queueing disciplines. Generally, the class queueing
discipline manages the data and queues for that class and can decide to delay,
drop or reclassify the packets it manages.



Classifiers or filters describe packets and map them into classes managed by
the queueing disciplines. These normally provide simple description languages
to specify how to select packets and map them to classes. Currently, several
filters (depending on your needs) are available in conjunction with TC, including
the route-based classifier, the RSVP classifier (one for IPV4 and another for
IPV6) and the u32 classifier. All of the firewalling filters can be used subject to
their internal filtering tags. For example, ipchains could be used to classify
packets.

The TC code resides in the kernel and the different blocks can be compiled in as
modules or straight into the kernel. Communication and configuration of the
kernel code or modules is achieved by the user-level program tc written by
Alexey. The interaction is shown in Figure 1. The tc program can be
downloaded from ftp://linux.wauug.org/pub/net/ip-routing/iproute2-
current.tar.gz. You will need to patch it for glibc, if you are using a glibc-only
system. The patches are available in the same directory. Note that the package
also includes the ip and rtmon tools.

Figure 1. Configuration of Kernel Code with TC

TC Features

TC is very flexible: you decide what you want to configure as a service. An ISP
that offers virtual servers with different QoS levels is a good example of the
power of Linux traffic control. Note that similar services can be applied within
an intranet. The traditional offer differentiator when ISPs sell virtual, web-
server, hosting services is disk space. For $5 more a month, you could get an
additional 100 megabytes of disk space for your hosted web server. Other ISPs
differentiate services based on access to other services, such as Realvideo and
SSL, from your web pages. Still others base it on how many hits your web pages
get and such things. With Linux traffic control in place, a new dimension is
added to differentiating services. This presents many new opportunities for
differentiating services offered to your customers. For example, if you offer
virtual web hosting, you could offer four different packages:

• Service Level Agreement (SLA) 1: cost $5/month—visitors to customers'
virtual servers can get up to 250Kbps coming out of the server.

• SLA2: cost $7/month—250Kbps, which can overshoot to 1Mbps between
the hours of midnight and 6AM.

• SLA3: cost $9/month—250Kbps, which can overshoot to 1Mbps when
bandwidth is available at any time of the day.

• SLA4: cost $50/month—up to 1Mbps of high-priority, low-latency
bandwidth suitable for video and audio delivery (as well as IP telephony),

https://secure2.linuxjournal.com/ljarchive/LJ/062/3369f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3369f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3369f1.jpg


with extra filters to give very low bandwidth to low priority visitors (e.g.,
those who get their services free).

A wide range of creative services could be offered. The time-of-day features
could easily be added by using crontab-activated scripts to change
configurations. 

Example

The following is an example of a Linux box with two virtual servers (web, FTP,
etc.) and how an ISP can sell them as two separate packages based on the
maximum bandwidth one gets when visiting those two virtual servers.

Kernel Compile

I'll assume you know how to compile the kernel and add network and aliasing
support. I used kernel 2.1.129 and a few other patches at the time of this
writing. Linux 2.2 pre1 had just come out, but the patches had not made it in
yet. By the time you read this, 2.2 will be out and everything I used will be
included.

The first challenge is the clock source. In order to accurately determine
bandwidth measurements, you need a very fine-grained clock. In Linux, the
clock runs at a frequency of HZ, defined to be 100 for the ix86, i.e., 100 clock
ticks per second which translates to a granularity of 10ms for each clock tick.
On Alphas, HZ is defined as 1000, giving a granularity of 1ms. I would not
suggest changing the value of HZ in the code. The TC clock sources are adjusted
by editing the file /include/net/pkt_sched.h under the kernel tree and modifying
the line which defines PSCHED_CLOCK_SOURCE. To start, I suggest leaving the
clock source alone until you get comfortable with running other things. The
default clock source, PSCHED_JIFFIES, will work fine on all architectures. Use
PSCHED_CPU on high-end Pentiums and Alphas. The most precise and
expensive clock source is PSCHED_GETTIMEOFDAY. Use this if you have a truly
high-end Pentium II or Alpha. Do not try to use it on a 486.

Next, compile the kernel. Select Kernel/User netlink socket and 
Netlink device emulation to allow use of netlink so that tc can talk to the kernel.
The second option is a backward compatibility option and may be obsolete now
that 2.2 is out, so don't worry if you don't see it. Next, compile in all the
queueing disciplines and classifiers. Although each can be selected as a
module, I compiled them straight in. The selections are QoS or fair queueing,
CBQ packet scheduler, CSZ packet scheduler, the simplest PRIO
pseudoscheduler, RED queue, SFQ queue, TBF queue, QoS support, rate
estimator, packet classifier API, routing-tables-based classifier, U32 classifier,
special RSVP classifier and special RSVP classifier for IPv6.



Go through the normal procedure of compiling and installing the kernel.

Compiling and Setting Up TC

If you use glibc as I do (Red Hat 5.2), you will need to apply the glibc patch. A
glibc patched source for tc is included (tc-glibc-patched.tgz). The major catch is
to change the Makefile to point to where the kernel include file is. Typing make

should then cleanly compile tc and ip for you. The ip-routing directory contains
patches with names iproute2-*.glibc2.patch.gz. Get the latest one to match with
the current tc. I downloaded iproute2-2.1.99-now-ss981101.glibc.patch.gz at
the time of this writing.

tc Setup

Figure 2. CBQ Tree Diagram 

Figure 2 shows the simple scenario we are going to set up. Two leaf nodes are
emanating from the root. IP address 10.0.0.10 (classid 1:1) and 10.0.0.11
(classid 1:2) are aliases on device eth0. They all share the same parent—classid
1:0 (the root node). Again, the intent is to show what one can do without going
into fine details or building a complex TC setup. With some modifications, one
can build more interesting setups with multiple devices.

The general recipe for setting up the QoS features is to first attach a qdisc to a
device. In the sample script, this is achieved by the line

qdisc add dev eth0 root handle 1: ...



Next, define your classes. This allows you to discriminate between the different
traffic types going out. In the sample script, this is achieved by the lines which
start with 

tc class add dev eth0 parent 1:0 classid X:Y ...

In the sample script, a one-level tree is shown. However, one can build a
multiple depth tree. Basically, a child node (as shown in Figure 2) inherits from
a parent and is then further resource-restricted by the class definition. For
example, the root class 1:0 owns the device's bandwidth. The child node 1:1
cannot have more than 10Mbits allocated to it, but is restricted to 1Mbps.
Eventually, the leaf nodes get packets sent to them based on the classifier
mapping packets to them. This is quite similar to the UNIX directory and file
tree structures. You can think of non-leaf nodes as directories and leaf nodes
as files. 

Finally, define your packet-to-class mappings to tell your classifier which
packets to send to which class. You must define the classes for this to make
sense. First, attach a classifier to the proper class. In the sample script, this is
achieved by the construct which starts with the line

filter add dev eth0 parent 1:0 protocol ip ...

Next, define the packet-to-class mappings that will be used. In the sample
script, this is defined in the constructs that define the matching criteria (such as
match ip src ...). Always map packets to leaf classes. 

If you follow this recipe and substitute the right syntax for the different
queueing disciplines and filters, you will get it right. The appropriate details are
in the options.

Listing 1.

Testing the Setup

In our setup, we have two virtual web servers on a single Linux machine. The
setup script (Listing 1) includes some commented sample IP-aliasing examples
using the supplied ip utility. The ip utility is feature-loaded and not in the scope
of this article. IP addresses 10.0.0.10 and 10.0.0.11 are attached (aliased on) to
device eth0 in the example.

To test, use ftp to get to another machine on the network. First, use ftp to get to
IP address 10.0.0.10, where you should observe a rate of approximately 1Mbps.
Quit that ftp session and start another one to 10.0.0.11, where you should
observe a throughput of approximately 3Mbps.

https://secure2.linuxjournal.com/ljarchive/LJ/062/3369l1.html


Final Word

These are very exciting times for Linux. As far as I know, Linux is the most
sophisticated QoS-enabled OS available today. The closest second is probably
BSD's ALTQ, which lags quite a bit behind the sophistication, flexibility and
extensibility found in Linux TC. I am not aware of any such functionality in
Microsoft products (perhaps someone could provide pointers if they exist). Sun
Solaris does have a CBQ and RSVP combo they sell as a separate product. I
predict a huge increase in the use of Linux servers as a result of the many
features available with TC. Alexey has taken Linux to a new level.

Support for the IETF diffserv features is also in Linux. The work extends the TC
to add the most flexible diffserv support known today. Diffserv support was
made possible through efforts by Werner Almesberger (who also wrote LILO,
Linux-ATM and more) and myself. For more details, see http://lrcwww.epfl.ch/
linux-diffserv/.

Acknowledgements

All listings referred to in this article are available by anonymous download in
the file ftp.linuxjournal.com/pub/lj/listings/issue62/3369.tgz.

Jamal Hadi Salim (hadi@cyberus.ca) is a hacker wannabe. He spends a fair
amount of his spare time staring at Linux networking code. Jamal was the
original author of the Sendmail-UUCP HOWTO and is the CASIO digital diary
serial driver/application author, which he still maintains. He also has sent the
occasional patches to many things, including the kernel, biased towards
networking issues. Currently, his efforts are focused mainly in the network
scheduling code where he co-authored the Linux diffserv code with Werner
Almesberger. 

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/062/3369s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/listings/062/3369.tgz
mailto:hadi@cyberus.ca
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

System Administration

Martin Schulze

Issue #62, June 1999

What should you do if using a single disk or partition for the root file system is
unacceptable? Use two or three. This article provides a solution for this
problem. 

RAID stands for “Redundant Array of Inexpensive Disks”. It is meant to speed up
and secure disk access at the same time. RAID, though, is not new. It was
invented in 1987 at the University of California, Berkeley. Before Linux, it was
available only in the form of special hardware that was quite expensive. Of
course, it could be used only in high-end computing centers. 

During the last decades, performance of processing units has increased by five
to ten times each year, depending on which statistic you believe. In the same
period, disk capacity has doubled or tripled while prices were halved every one
to two years. Used electronics don't reflect the current processor speed. This
results in I/O being the current bottleneck of modern computers. Just try to
compile our famous XFree86 source on a dumb PII-233 with regular SCSI disk
layout.

By the time people at Berkeley realized this, they were able to foresee that no
new epoch-making technology for hard disks would be forthcoming in the near
future. Since magnetic- and mechanic-oriented disks were kept and laws of
physics permit only slight improvements, other solutions needed to be found.

This resulted in the definition of several RAID levels. Nowadays they are used
not only in high-level computer rooms, but also by the so-called middle-end
sector. Since some fellow kernel hackers decided to implement RAID for the
Linux kernel, this technique can be used by low-end PCs, and regular people
can be satisfied by the improved performance and data security.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/062/3205f1.large.jpg


Figure 1. Operation of RAID-5 

RAID levels share the following properties:

• Several different physical disks are combined and accessed as a
compound element. Under Linux, this is done by the driver for multiple
devices, also known as /dev/md*.

• The stored data is distributed over all disks in a well-defined way.
• The data is stored in a redundant way over the disks, so in case of failure,

data is recoverable.

By dividing data into equal chunks and distributing them over all affected disks,
one gets higher I/O performance than by using only one fast disk. The reason
for this is due to ability to request data from the disks in a parallel fashion. The
easiest way to do this is called striping mode or RAID level 0, but it doesn't
contain any redundancy. 

Redundancy is achieved in different ways. The simplest is to store the data on
two equal disks. This is defined in RAID-1, also known as mirroring. Of course,
one gets performance increase only when at least four disks are used.

More efficient redundancy is obtained when instead of duplicating all the data,
a unique checksum is generated and stored with regular data. If a single disk
should fail, one is able to reconstruct its data by using all data chunks of that
stripe together with the calculated checksum. The easiest way to calculate a
checksum is to XOR all data chunks in a stripe. This is defined in RAID levels 4
and 5. The unofficial level 6 uses another chunk for a different checksum
algorithm, resulting in two redundant disks, and even better breakdown
avoidance.

How to Set Up RAID

Using file systems with RAID has many advantages. First is speed. RAID
combines several disks and reads/writes chunks from the disks in sequence.

https://secure2.linuxjournal.com/ljarchive/LJ/062/3205f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3205f1.large.jpg


Second, you can get bigger file systems than your largest disk (useful for /var/
spool/news/, /pub/, etc.). Third, having achieved redundancy means a disk
failure won't end up in data loss. For technical information on RAID, please
refer to ftp://ftp.infodrom.north.de/pub/doc/tech/raid/.

To use RAID with Linux, you need a kernel with appropriate support. First of all,
this refers to support for the “multiple devices driver” (CONFIG_BLK_MD_DEV).
Linux 2.0.x supports linear and striping modes (the latter is also known as RAID
0). Linux kernel 2.1.63 also supports RAID levels 1, 4 and 5. If you want to use
these levels for 2.0.x, you'll have to install the kernel patch mentioned at the
end of this article.

To use either, you must activate the appropriate driver in the kernel. (I'd
suggest compiling a kernel of your own anyway.) Additionally, you need to have
special tools installed. For linear mode and RAID level 0, you need the mdutils

package that should be included in your distribution. To use RAID level 1, 4 or 5,
you need to have the raidtools package installed, which supersedes the mdutils
package.

Striping works most efficiently if you use partitions of exactly the same size.
Linux's RAID driver will work with different sizes, too, but is less efficient. In that
case, the driver doesn't use all disks for striping after a certain amount of disk
space is used. The maximum number of disks will be used at any time.

After setting up RAID and combining several disks to a compound device, you
don't access the disks directly using /dev/sd*. Instead, you make use of the
multiple devices driver that provides /dev/md*. These devices are block devices
just like normal disks, so you simply create a file system on them and mount.

The default setup of the Linux kernel provides up to four such compound
devices. Each MD can contain up to eight physical disks (block devices). If your
setup requires either more combined devices or more compound devices, you
have to edit include/linux/md.h within the Linux kernel source tree, especially 
MAX_REAL and MAX_MD_DEV. For testing purposes, you can use some
loopback devices instead of physical disks.

Swapping over RAID

https://secure2.linuxjournal.com/ljarchive/LJ/062/3205f2.large.jpg


Figure 2. Position of RAID within the Linux Kernel 

The Linux kernel includes native support for distributing swap space over
several disks. Instead of setting up a RAID-0 device and directing swap to it, you
simply add all swap partitions to /etc/fstab and use the swapon -a to activate
them all. The kernel uses striping (RAID-0) for them. Here's a sample setup:

/dev/sda3  none  swap  sw
/dev/sdb3  none  swap  sw
/dev/sdc3  none  swap  sw

Setting Up RAID

Setting up RAID for normal file systems such as /var, /home or /usr is quite
simple. After you have partitioned your disks, instruct the RAID subsystem on
how to organize the partitions. This information is copied to /etc/mdtab for
later activation. It can be done by issuing the following command:

mdcreate -c4k raid0 /dev/md0 /dev/sda1 /dev/sdb1\
   /dev/sdc1

Listing 1. 

If you want to use RAID level 1, 4 or 5, you have to use an additional
configuration file that reflects the disk setup as shown in Listing 1. These levels
are more complicated and need a special signature on top of the compound
device. This signature is generated by the mkraid command. The remaining
setup looks like this:

mkraid /etc/raid/raid5.conf
mdcreate raid5 /dev/md1 /dev/sdd1 /dev/sde1\
   /dev/sdf1 /dev/sdg1 /dev/sdh1

Now two RAIDs have been created; the first consisting of three partitions, while
the second uses five of them. Depending on the data to be stored on them,
different chunk sizes have been selected. The next step is to activate these
devices with the command: 

mdadd -ar

https://secure2.linuxjournal.com/ljarchive/LJ/062/3205f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3205f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3205l1.html


From now on, you may refer to /dev/md0 and /dev/md1 as block devices that
may contain your file systems. In order to use these devices, issue this
command during the boot sequence. Please check out the startup sequence of
your distribution. Some of them (e.g., Debian) have already included this line. 

After the kernel knows how disks are organized, you can create your file system
on the new devices and add them to /etc/fstab as usual.

Root File System on RAID

The use of RAID for the root file system is a bit tricky. The problem is LILO can't
read and boot the kernel if it is not in a linear fashion on the disk (as it is on
EXT2 or MSDOS file systems). The solution is to put the kernel on a different
partition with a normal file system and activate RAID after the kernel is booted.

This way, LILO would boot the kernel, but the kernel itself would be unable to
mount the root file system because its RAID subsystem isn't initialized yet. Now
you're in trouble, right? No.

For late 2.1.x kernels, a kernel parameter can be used to load the kernel from a
RAID.

md=<
   <fault level>,dev0,dev1,...,devn

This needs to be added to LILO using the append= option or directly at the LILO
prompt during boot stage. You'll find more information in Documention/md.txt
in the Linux source tree. 

For stable kernels (2.0.x) and “not so late” development kernels (2.1.x), you
need a mechanism to call some programs after the kernel is loaded but before
it tries to mount the root file system. This refers at least to mdadd.

The only way to achieve this is to use the initial RAM disk, also known as initrd.
General information about initrd may be found in Documentation/initrc.txt
inside the kernel source tree.

You will most likely have to compile your own kernel, although you can try the
one included with your distribution if it contains all facilities. You'll need to add
modules support to the described solution. However, additional kernel
compilation options are needed for the described setup and are shown in
Listing 2. Additionally, you have to include support for your SCSI card, etc. If
you're uncertain about the options, refer to the Kernel-HOWTO and use ? to
display a description of the referenced driver.

Listing 2.

https://secure2.linuxjournal.com/ljarchive/LJ/062/3205l2.html


If the Linux kernel uses initrd, it mounts the given RAM disk as root file system
and executes /linuxrc if found. Then the kernel continues its boot process and
mounts the real root file system. The old initrd root will be moved to /initrd if
that directory is available or will be unmounted if not. If it is only moved, the
RAM disk remains in memory. So on systems with little memory, you should get
the kernel to remove it entirely when it is no longer needed.

The initrd file is a “simple” root disk, containing all the files needed for
executing the /linuxrc file. If it is a shell script, it includes a working shell and all
tools used in this script. In order to execute programs, it also includes a
working libc with ld.so and tools. Alternatively, you can link the included
programs statically and don't need a shared libc. Since this doesn't save any
space, it is not necessary.

After RAID has been initialized from /linuxrc, you must tell the kernel where its
new root file system resides. At that time, it may be configured to use initrd as
the root file system. Fortunately, our fellow kernel hackers have designed
another easy interface to set the root file system.

This facility makes use of the /proc file system. The device number of the new
root file system must be sent (use echo) to /proc/sys/kernel/real-root-dev, and
the kernel continues with that setting after /linuxrc completes.

As LILO normally isn't able to boot from a non-linear block device (such as
RAID), you must reserve a small partition with the kernel and initial RAM disk on
it. I've decided to use a 10MB partition as /boot. Binaries can be stored in this
partition and it can be accessed from a rescue floppy. I wonder why one should
use this since Linux is so stable, but for the sake of security it may be a good
idea.

10MB is plenty of space for one kernel and a RAM disk of approximately 1MB in
size. Currently, my system uses only 2.5MB of this space, so plenty of playing
room is available. Due to the fact that /boot uses the normal file system (e.g.,
EXT2), you can use /etc/lilo.conf to point to /boot/vmlinuz in your setup.

Now you need to decide what to do in your /linuxrc script. Basically, activate
RAID and tell the kernel where your root file system resides. Listing 3 shows an
example /linuxrc program.

Listing 3.

Any block device can be used as the root file system. In the given example,
0x900 is used. This stands for major number 9 and minor number 0, which is
the encoding for /dev/md0.

https://secure2.linuxjournal.com/ljarchive/LJ/062/3205l3.html


Next, make a list of binaries and additional files needed, including some device
files in /dev. To get the /linuxrc script working, you need /dev/tty1. Other
necessary devices depend on your /etc/mdtab file. You will need at least /dev/
md0.

The above example uses these binaries: ash, mount, umount and mdadd.
These files are also needed: mdtab, fstab, mtab and passwd.

Listing 4.

The mdtab file I use is shown in Listing 4. For my file, these block devices must
be created on the initial RAM disk: /dev/hda2, /dev/hda4, /dev/hdb2, /dev/hdb4,
/dev/md0, /dev/md1, /dev/md2 and /dev/md3. Use the mknod command to
create these device files. You'll find their major and minor numbers by
investigating your /dev directory or by reading Documentation/devices.txt from
the kernel's source directory. The following commands create tty1 and md0:

mknod dev/tty1 c 4 1
mknod dev/md0 b 9 0

The best way to create the initial RAM disk is to create the directory /tmp/initrd
and install everything you need in it. Once you have done that, determine the
used disk space (du -s), then create the initrd file. The following commands will
create an initial RAM disk 1MB in size. To use it, your kernel must include
support for the loopback device. 

dd if=/dev/zero of=/tmp/initrd.bin bs=1024k\
   count=1
mke2fs /tmp/initrd.bin
mount -o loop /mnt /tmp/initrd.bin

Since dynamically linked binaries are used, the Linker and the dynamic libraries
must also be installed, at least /lib/libc*.so, /lib/ld-linux.so.2, /lib/ld-2.0.*.so and
an appropriate /etc/ld.so.config file—appropriate means that /lib should be the
only line in the file. Create a new library cache /etc/ld.so.cache file with the
command 

ldconfig<\!s>-r<\!s>/tmp/initrd

and install the needed binaries in appropriate directories: /sbin or /bin. 

Don't forget to create the /proc directory, or the mount will fail. The fstab and
mtab files can be empty and read-only, but must exist on the initial RAM disk.
No program will attempt to write to these two files. For the /etc/passwd file, it's
sufficient to include only the root user.

After you have copied everything from /tmp/initrd to the RAM disk mounted at
/mnt (see above), unmount it (e.g., with the command umount /mnt) and move

https://secure2.linuxjournal.com/ljarchive/LJ/062/3205l4.html


the file to /boot/initrd.bin. Now tell LILO to load the kernel and the RAM disk,
using a record in /etc/lilo.conf similar to the one shown in Listing 5.

Listing 5.

Issue the lilo command, and you are almost done. Since the RAID subsystem is
now configured at boot stage before any /etc/init.d scripts are issued, you
should disable the mdadd call in the /etc/init.d scripts.

This setup implies you have a running Linux system installed on some non-RAID
disk. At least install a small base system on your swap partitions, compile the
kernel on a different machine, set up RAID on the appropriate machine, move
the files and continue installation afterwards.

Resources

Martin Schulze studies computer science in Oldenburg, Germany. He has used
Linux for several years and tries to improve it where he can. Nowadays he
maintains several machines in his hometown and is involved in several Linux
projects, such as being the RAID maintainer for Debian GNU/Linux. He can be
reached via e-mail at joey@infodrom.north.de.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/062/3205l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/3205s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

The awk Utility

Louis J. Iacona

Issue #62, June 1999

An introduction to the Linux data manipulation tool called awk. 

Partly tool and partly programming language, awk has had a reputation of
being overly complex and difficult to use. This column demonstrates its
usefulness without getting hung up on the complexity. 

Scripting languages such as the UNIX shell and specialty tools like awk and sed

have been a standard part of the UNIX landscape since it became commercially
available. In 1982, “real programmers” used C for everything. Tools such as sed
and awk were viewed as slow, large programs that “hogged” the CPU. Even
applications that performed structured data processing and report-generation
tasks were implemented in fast, compiled languages like C.

Part of my motivation for writing this article comes from observing that, even
today, most system administrators and developers are either uninformed
about or intimidated by utilities like awk and sed. As a result, tasks that should
be automated continue to be performed manually (or not at all), or duller tools
are used instead.

Admittedly, both awk and sed are rather peculiar tools/languages. Both
recognize traditional UNIX “regular expressions”—powerful, but not trivial to
learn. Both tools seem to offer too many features—quite often providing
several ways of performing the same task. Therefore, mastering all the features
of awk and sed and confidently applying them can take awhile—or so it may
seem. First impressions notwithstanding, you can quickly and effectively apply
these tools once you understand their general usefulness and become familiar
with a subset of their most useful features. My intent is to provide you with
enough information and example code for getting jump-started with awk. You
can read about sed in April's “Take Command: Good Ol' sed” by Hans de
Vreught.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


sed and awk are two of the most productive tools I have ever used. I rely on
them quite heavily to implement a wide range of tasks, the implementation of
which would take considerably longer using other tools/languages.

I will assume you have heard of or worked with some of the more significant
sub-systems of Linux and that you have an understanding of how to use the
basic features of the shell command line, such as file I/O and piping. Familiarity
with a standard editor such as vi and a working knowledge of regular
expressions would also be useful. Many Linux commands, including grep, awk
and sed, accept regular expressions as part of their invocation, so you should at
least learn the basics.

A Word about Regular Expressions

My coverage of the awk tool is limited to an introductory foundation. Many
advanced features are offered by awk (gawk and nawk) but will not be covered
here.

General Overview

The meaning behind the name of this tool is not terribly interesting, but I'll
include an explanation to solve the mystery of its rather uncommon name. awk

was named after its original developers: Aho, Weinberger and Kernighan. awk

scripts are readily portable across all flavors of UNIX/Linux.

awk is typically engaged to reprocess structured textual data. It can easily be
used as part of a command-line filter sequence, since by default, it expects its
input from the standard input stream (stdin) and writes its output to the
standard output stream (stdout). In some of the most effective applications,
awk is used in concert with sed—complementing each other's strengths.

The following shell command scans the contents of a file called oldfile,
changing all occurrences of the word “UNIX” to “Linux” and writing the resulting
text to a file called newfile.

$ awk '{gsub(/UNIX/, "Linux"); print}' oldfile \>\
newfile

Obviously, awk does not change the contents of the original file. That is, it
behaves as a stream editor should—passively writing new content to an output
stream. This example barely demonstrates anything useful, but it does show
that simple tasks can be implemented simply. Although awk is commonly
invoked from a parent shell script covering a grander scope, it can be (and
often is) used directly from the command line to perform a single
straightforward task as just shown. 

https://secure2.linuxjournal.com/ljarchive/LJ/062/2533s1.html


Although awk has been employed to perform a variety of tasks, it is most
suitable for parsing and manipulating textual data and generating formatted
reports. A typical (and tangible) example application for awk is one where a
lengthy system log file needs to be examined and summarized into a formatted
report. Consider the log files generated by the sendmail daemon or the uucp

program. These files are typically lengthy, boring and generally hard on a
system administrator's eyes. An awk script can be employed to parse each
entry, produce a set of category counts and flag those entries which represent
suspicious activity.

The most significant characteristics of awk are:

• It views its input as a set of records and fields.
• It offers programming constructs that are similar (but not identical) to the

C language.
• It offers built-in functions and variables.
• Its variables are typeless.
• It performs pattern matching through regular expressions.

awk scripts can be very expressive and are often several pages in length. The
awk language offers the typical programming constructs expected in any high-
level programming language. It has been described as an interpreted version of
the C language, but although there are similarities, awk differs from C both
semantically and syntactically. A host of default behaviors, loose data typing,
and built-in functions and variables make awk preferable to C for quick-
prototyping tasks. 

awk Invocation

At least two distinct methods can be used to invoke awk. The first includes the
awk script in-line within the command line. The second allows the programmer
to save the awk script to a file and refer to it on the command line.

Examine the two invocation styles below, formatted in the typical man page
notation.

awk '{
awk -Fc -f script_file [data-file-list ...]

Notice that data-file-list is always optional, since by default awk reads from
standard input. I almost always use the second invocation method, since most
of my awk scripts are more than 10 lines. As a general rule, it is a good idea to
maintain your awk script in a separate file if it is of any significant size. This is a
more organized way to maintain source code and allows for separate revision
control and readable comment statements. The -F option controls the input



field-delimiter character, which I will cover in detail later. The following are all
valid examples of invoking awk at a shell prompt: 

$ ls -l | awk -f
$ awk -f
$ awk -F: '{ print $2 }'
$ awk {'print'} input_file

As you will see through examples, awk programming is a process of overriding
levels of default actions. The last example above is perhaps the simplest
example of invoking awk; it prints each line in the given input file to standard
output. 

The Language

If you acquire a thorough understanding of awk's behavior, the complexity of
the language syntax won't appear to be so great. To provide a smooth
introduction, I will avoid examples that take advantage of regular expressions
(see “A Word About Regular Expressions”). awk offers a very well-defined and
useful process model. The programmer is able to define groups of actions to
occur in sequence before any data processing is performed, while each input
record is processed, and after all input data has been processed.

With these groups in mind, the basic syntactical format of any awk script is as
follows:

BEGIN {

}
{

}
END {

}

The code within the BEGIN section is executed by awk before it examines any of
its input data. This section can be used to initialize user-defined variables or
change the value of a built-in variable. If your script is generating a formatted
report, you might want to print out a heading in this section. The code within
the END section is executed by awk after all of its input data has been
processed. This section would obviously be suitable for printing report trailers
or summaries calculated on the input data. Both the END and BEGIN sections
are optional in an awk script. The middle section is the implicit main input loop
of an awk script. This section must contain at least one explicit action. That
action can be as simple as an unconditional print statement. The code in this
section is executed each time a record is encountered in the input data set. By
default, a record delimiter is a line-feed character. So by default, a record is a
single line of text. The programmer can redefine the default value of the record
delimiter. 



The following input data text will be assumed in each of the following
examples. The content of the data is somewhat silly, but serves the exercise
well. You can imagine it representing a produce inventory; each line defines a
produce category, a particular item and an item count.

fruit: oranges 10
fruit: peaches 11
fruit: plums 11
vegetable: cucumbers 8
vegetable: carrots
fruit: tomatoes 2

We will start off very simply and quickly work into something non-trivial. Notice
that I make a habit of always defining each of the three sections, even if the
optional sections are stubbed out. This serves as a good visual placeholder and
reminds the programmer of the entire process model even if certain sections
are not currently useful. Be aware that each of the examples could be collapsed
into shorter scripts without any loss of functionality. My intent here is to
demonstrate as many awk features as possible through these few examples. 

Listing 1.

Look at the example script in Listing 1 and try to relate it to its output:

fruit: oranges 10
fruit: peaches 11
fruit: plums 11
fruit: tomatoes 2

By default, an input record is a line-feed terminated section of text, so if the
input contains six lines, the implicit main loop marked by the # (1) comment
executes six times. The awk source-code comments are specified with a #
character—the interpreter ignores characters from the # to the end of the line
(same comment style as the UNIX shell). The built-in variable $0 always contains
the entire current record value (see built-in variable table below). The line
below the (1) marker checks to see if the current input record is an empty line.
If it is, awk goes on to read the next input record. Each field within a record is
assigned to an ordered variable—$1 through $N where N is equal to the
number of fields in the current record. What determines a field? Well, the
default field separator is any “white space”—a space or tab character. The field
separator character can be redefined. The line below the # (2) comment will
print out the entire record if the first field is set to fruit:. So, when looking at the
output produced by Script 1, all lines of type fruit are displayed. 

Listing 2.

Take a look at the example script in Listing 2 and try to relate it to its output
below. The only noticeable enhancement is the data summary at the end—
stating how may of the total units were of type fruit.

https://secure2.linuxjournal.com/ljarchive/LJ/062/2533l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/2533l2.html


fruit: oranges 10
fruit: peaches 11
fruit: plums 11
fruit: tomatoes 2
4 out of 5 entries were of type fruit:.

This time, we made use of the two optional BEGIN and END sections of the awk
script. The group of statements preceded by the # (1) comment initialize some
programmer-defined variables: FCOUNT, COUNT and TYPE—representing the
number of fruit: records encountered, the total number of records and the
produce-category name. Notice that the line preceded by the # (3)

unconditionally increments the record counter (also note that syntax is
borrowed from the C language). The section of code preceded by the # (4)

comment now references the TYPE variable instead of a literal string, and
increments the FCOUNT variable. The next section of code makes use of the 
printf built-in function (works just as the C-library printf does, but differs a bit
syntactically) to print out a sub-count and a total count. 

Listing 3.

Look at the example script in Listing 3 and try to relate it to its output. Notice
that the only records displayed are those which were flagged as an error and
those indicating a supply shortage. The summarization at the end of the output
now includes additional information. Output from Listing 3:

Parsing inventory file "input_data"
Bad data encountered: vegetable: carrots
Short on tomatoes: 2 left
4 out of 5 entries were of type Fruit.
1 out of 5 entries were of type Vegetable.
0 out of 5 entries were of type Other.
1 out of 5 entries were flagged as bad data.
1 out of 5 entries were flagged in short supply

In this third example, we make further use of the two optional BEGIN and END

sections. Once again, the BEGIN section initializes some programmer-defined
variables. It also prints out a heading that indicates the name of the input file
(the built-in variable FILENAME is referenced). Notice the new code section
preceded by the # (3) comment. The NF variable is a built-in that always
contains the number of fields contained in the current record. Since white
space is still our field delimiter, we would always expect three fields. This code
section flags and displays a record that is deemed bad data. Also, a counter
maintaining the number of errors is incremented. Since records deemed invalid
are useless, the program then goes on to process the next input record. The
code section preceded by the # (5) comment was altered to maintain additional
counts based on the produce category type. 

Now let's assume a system administrator is asked to determine the proportions
certain shell interpreters are being used with the choices of the standard
Bourne Shell, the Korn Shell and the C Shell. The script will provide a

https://secure2.linuxjournal.com/ljarchive/LJ/062/2533l3.html


breakdown of usage by total count and percentages and flag the instances
where a login shell was not applicable or not assigned to a system user.
Examine the script in Listing 4—it satisfies our requirement. Relate the code to
its output in Listing 5.

Listing 4.

Listing 5.

The first thing worth noticing in the Listing 4 script is the assignment to the
built-in variable FS—the input field delimiter. Entries in the /etc/passwd file are
made up of colon separated fields. Field 7 indicates which program (shell) is run
on behalf of that user at login time. Entries with an empty field 7 are printed
out, then the summary report is printed.

Thus far, we have reviewed awk's behavior through several small examples of
code. The features demonstrated provide a working foundation. You have seen
the execution flow of an awk process. You have seen built-in and user-defined
variables being manipulated. And you have seen a few built-in awk functions
applied. As with any high-level language, one can be very creative with awk.
Once you get comfortable, you will want to put it to more sophisticated use.
Most Linux systems today offer the features of nawk (new awk), which was
developed in the late 1980s. nawk and GNU's gawk make it possible to do the
following within an awk script:

• Include programmer-defined functions.
• Execute external programs and process the results.
• Manipulate command line arguments more easily.
• Manage multiple I/O streams.

Table 1. 

Table 2.

As a reference, Tables 1 and 2 define the most common built-in variables and
functions. Also, note that the following operators each have the same meaning
in awk as they do in C (refer to the awk man page):

* / % + - = ++ -- += -= *= /= %=

Conclusions

Scripting languages and specialty tools that allow rapid development have been
widely accepted for quite some time. Both awk and sed deserve a spot on any
Linux developer's and administrator's workbench. Both tools are a standard

https://secure2.linuxjournal.com/ljarchive/LJ/062/2533l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/2533l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/2533t1.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/2533t2.html


part of any Linux platform. Together, awk and sed can be used to implement
virtually any text filtering application—such as perform repetitive edits to data
streams and files and generate formatted reports.

The most current reference book for both awk and sed is the O'Reilly release 
awk and sed by Dale Dougherty and Arnold Robbins. Also see Effective AWK
Programming by Arnold Robbins (SSC). For an immediate on-line synopsis on
your Linux system, use the man command as follows:

I hope the information provided here is useful and encourages you to begin or
expand your use of these tools. If you exploit what awk and sed offer, you will
most certainly save development time and money. Those who know how to
quickly apply sharp tools to seemingly complex problems are handsomely
rewarded in our field. 

Louis Iacona (lji@peakaccess.com) has been designing and developing software
systems since 1982 on UNIX/Linux and other platforms. Most recently, his
efforts have focused on applying World Wide Web technologies to client/server
development projects. He currently manages the Internet development group
at ICP in Staten Island, N.Y.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Letters to the Editor

Various

Issue #62, June 1999

Readers sound off. 

I18N

I work as a journalist for the Slovak magazine PCRevue, so typing articles in my
native language is very important for me. On page four (describing the cover) of
the 3/99 issue of LJ, you stated that Linux is truly an international OS. A true
statement, but just partially.

Stephan Kulow, Mathias Elter and I along with many translators from around
the world want to make the KDE environment internationalized. It works fine
for us; we have menu items, and I can write ISO-8859-2 characters to this
localized Kmail window with no problems. KDE was the first desktop
environment in Slovakia, translated to our language (Windows 95 was not
translated; they just did Windows 98). This is one area in which we are a step
ahead. GNOME, CDE and other desktop systems for UNIX have not been
translated.

Also, the developers of (mainly) commercial software don't handle I18N
properly, so we must use wrappers for libX11 done by Stano Meduna, et al. We
have some patches that would help I18N in XFree, for example, but XFree
development isn't truly open—no reply, no help. No truly usable office software
is available under Linux for our language. For example, Star Office from Star
Division doesn't initialize I18N properly. With wrappers, it works partially, but
when importing MS Word 97 documents, it won't change the encoding from
Windows-1250 to ISO-8859-2, so I am displaying Windows-1250 with ISO-8859-2
fonts. Export of HTML is done via that ugly 7-bit convention. Surprisingly, not all
characters are working like this (e.g., l-acute works only in some browsers and
doesn't get exported correctly). WordPerfect took care in providing I18N
support, but it also uses the 7-bit convention for HTML export and cannot
import other HTML encodings (like Unicode). The import/export of Word works

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


fine, but it is not perfect. The t-acute and l-acute characters are changed for
question marks; l-acute is probably used only in our language, but
programmers should think about it.

I am looking for Koffice or some open-source office package which I could fix to
use I18N correctly, or a commercial company that fixes its errors fast, responds
to users and takes care about their products. We have found, for example, that
Red Hat is such a company. They have incorporated Stano's patches for X and
our key maps into the distribution along with character sets and other things to
help I18N. But they don't make an office suite.

—Juraj Bednar bednar@isternet.sk

Table of Contents for Supplements

Two possible solutions to the weird rules of the Post Office are: print the TOC in
the previous or following month's magazine, or publish the TOC on your web
site.

—Alan Rocker rocker@acs.ryerson.ca

As a matter of fact, we do publish the TOC on-line. See http://
www.linuxjournal.com/issue57/lstoc.html for both the TOC and all the articles
—Editor

Interactive LJ

Ah, you just robbed me of all the fun of making my own searchable index of LJ
issues. Your service at http://interactive.linuxjournal.com/ just found the article
I needed.

Thank you for a very useful on-line service, and of course, the indispensable 
Linux Journal.

—Rolf Magnus Nilsen rolf@itdata.no

Error in March 1999 issue

I always take the “Best of Technical Support” column with a grain of salt, since it
is user opinions based on no investigation of the specific situation. However,
one in March was kind of appalling. Luis Cardenas asked if PCI modems would
work with Linux. You published a response by Mario Bittencourt that was a very
nice, concise guide to making ISA modems work with 2.0.x or older kernels.



Unfortunately, the advice is not at all applicable to PCI modems and could very
well lead people to go out and purchase such modems, only to find they won't
work on Linux.

Further, the advice is only good for older kernels which still support the
deprecated /dev/cua# devices. It has been considered bad practice to use these
devices for some time, and in the current kernel they don't exist anymore.

—Shawn McMahon smcmahon@eiv.com

Yes, you are correct—PCI modems are basically Windows only. We should have
caught that, sorry —Editor

Kudos to Trident

I am writing to let you know of a recent hardware company's exceptional
support to the GNU/Linux community and the GPL.

The Advanced Linux Sound Architecture project (http://alsa.jcu.cz/) is a project
designed to build an architecture for pro-quality sound and MIDI applications,
from low-level drivers for sound and MIDI hardware to high-level libraries and
sequencers. The project is committed to releasing all work under the GPL.

As you may know, many sound card manufacturers are reluctant to give any
technical help, and even some of those that offer help require non-disclosure
agreements, which exclude the possibility of released source. We have
blacklisted some companies (http://alsa.jcu.cz/black.html) which have either
refused to release information or have decided to release binary-only drivers,
which ALSA will not use.

Trident (http://www.tridentmicro.com/) recently contacted the ALSA developer
mailing list, having written their own drivers for their 4DWave chip set for ALSA,
and offering the source for the drivers. They graciously allowed all of it to be
put under the GPL, including technical documents.

I am hoping to drum up support for their hardware in order for the community
to demonstrate how cooperation of this sort can aid sales. Maybe this will
convince more companies to follow.

Their chip set is used in the following products. If GNU/Linux users are looking
towards purchasing a sound card, perhaps they would consider some of the
following, since these cards are well-supported under ALSA.



You can read more about ALSA and the call to sound card manufacturers at
http://alsa.jcu.cz/call.html/.

—Thomas Hudson thudson@cygnus.com

Window Manager Confusion Spells Doom

My company sells CAD software for Windows NT, we run the company on
Macintoshes, and we serve our data from Linux. I was surprised how easy Linux
was to get up and running.

However, once upon a time there were two UNIX tribes: the Open Software
Foundation and UNIX International. Each tribe was trying to rubber-stamp UNIX
for the masses. As the two camps fought, a third tribe from the Northwest
called Microsoft provided business with Windows NT. Windows NT did not
provide anything great; in fact, it was largely based on an operating system

Company Product Name

========= =============================

Best Union Miss Melody 4DWave PCI

HIS 4DWave PCI

Warpspeed ONSpeed 4DWave PCI

AzTech PCI 64-Q3D

Addonics SoundVision (model SV 750)

CHIC True Sound 4Dwave

Shark Predator4D-PCI

Jaton SonicWave 4D

Paradise WaveAudio Interactive (Model AWT4DX)

Promedia Opera CyberPCI-64

Stark PCI



from Digital Equipment Corporation called VMS. The UNIX tribes had beaten
this operating system years before.

Linux has a real opportunity to compete in business beyond the server. All that
is needed is a single standard desktop. Forget about KDE and GNOME. Merge
them, do whatever you must with them, but get a single desktop environment
for which developers can write applications and users will prosper.

I am convinced Windows NT cannot serve my business. Unfortunately, until
Linux provides a common desktop, Apple's OS X may be the only way to finally
bring the power of UNIX to the business user.

—Jeff Millard President, SolidVision, Inc. jeffmill@solidviz.com

Linux Certification

I am writing in regards to the article “Linux Certification for the Software
Professional” by P. Tobin McGinnis in LJ April 1999. First, I have been working
with PCs since I got my first Apple back in the early 80s. When I went to college,
I started using the x86 platform. After finishing my college degree, the Air Force
sent me to Keesler AFB to teach computers to new recruits. There I first heard
the word “certification” in regards to Novell's CNE program. We were teaching
Novell 4.x to our students. People started talking about Novell certification, and
of how much one could make if they had this certification. A couple of years
later, I was working as a contractor for the Corp of Engineers in Mobile, AL on a
team that went to field sites to convert Novell servers to NT. Once again, I
heard the certification buzzword, this time from Microsoft, and the buzz of big
money if one had the MCSE certification.

People began to scramble to get certified at great cost to themselves—$100 US
per test, $50 US per book, and in some cases, thousands of dollars for classes.
Now, many of the questions and answers for these certification tests can be
found on the Web. People are passing the test who have never installed the NT
OS. Yet because they are certified, they are called experts—their certificate is
meaningless.

Now I read in Linux Journal the buzz about Linux certification. I thought Linux
was better than that. Certification has always been a way for companies to
market their products. The training companies are the only ones getting rich
from certification. Linux has grown exponentially without certification. I am
against certification.

Please don't promote Linux certification. It will ruin the Linux movement. The
movement was created by people who rebelled against the likes of MS, Novell



and many other companies. Now it seems we are running to join their ranks
with the same certification nonsense.

—Kyle Enlow kenlow@indiana.edu

Linux in Schools

I am writing this after reading the article “Linux in a Public High School” by
Andrew Feinberg in your March issue. I am currently one of two system
administrators at Bridges Academy, located in Los Angeles, California. My
associate, Brook Elliot, and I run a Debian 2.0 box with the 2.0.36 kernel. The
Linux box runs on a T1 line, and using DHCP, we enable students to plug in to
any of the Ethernet jacks around the school and check their e-mail or browse
the Web. Although most of these students are using Windows 9x machines, a
select few of us use the full Linux potential.

Both Brook and I are students at this school. We currently have a web page up
for the school at http://www.bridges.edu/, which runs under Apache.

—Matthew Kaufman xel@Bridges.Edu

Byte Magazine Syndrome

Many years ago, Byte magazine was a technically oriented magazine that I
enjoyed reading as I enjoyed reading the December issue of Linux Journal. Early
last year, Byte was publishing fluff. I hope the March 1999 issue of Linux Journal
is not an indication of more fluff to come. With the exception of the GNU 
gettext article, where are the items that show a reader how to use a Linux
system in a new or more productive way, to use a new programming library, to
reduce incoming spam, etc.? One or two articles on interesting uses of Linux is
fine (such as “Linux for the International Space Station Program” by Guillermo
Ortega), but please don't go the way of Byte.

—Richard Film. Unix. Mirkwood@disney.com

I wouldn't call discussions of Internationalization “fluff” myself, but everyone
has his own opinion. As always, we try to remain as balanced as possible
between technical and non-technical articles. I hope April and May were more
to your liking —Editor

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

More Letters to the Editor

These letters were not printed in the magazine and appear here
unedited.

Network Administration with AWK

Having written many administration tools in AWK over the years, I was
pleased to see an article in your latest issue with that title. Too bad that's
not what the article was about. Further a shame that every code snippet
he included merely pulled in some external data and sent it to stdout.
And to further suggest that one use grep to extract the data! AWK
deserves so much more.

—Chip Christian, chip@princetontele.com

Feature Page

With the help of the March issue of the Linux Journal I have been able to
write a feature page for the Sheffield Linux User Group site.

The authors of the original authors have written to me to help me to
complete the Sheflug feature for April. I will upload the pages at the end
of the month. I would like to say thank you very much to the staff at LJ. If
I hadn't subscribed to the LJ I wouldn't have been able to produce such
an interesting article for Sheflug.

The proposed subject for the May feature is VNC servers with a quick
mention of VM Ware.

—Richard Ibbotson, r.ibbotson@zen.co.uk

Puffins and H-P

The Thursday Wall Street Journal article, “The Puffins Guide H-P Into an
Alien Culture On a Software Mission”, reminds me of an elephant dancing
with a mouse. I wonder which one is larger; the multi-million dollar
corporation or the Linux internet culture. Time will tell.

Christopher Beard and Alex deVries were wise not to ask for any money.
Just ask Ron Jones owner of Colossal Graphics and developer of a bulk ink
system who sued H-P for reneging on a deal. He was awarded $6.4
million-dollars by the Hon. Joseph F. Biafore on January 15, 1999.

Sorry fellows, there is no check in the mail!

—Gerald Green, GG10MAN@aol.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Error in April issue in “grep:searching for words” article

In this article Jan states “grep also accepts regular expressions....... the
following command can be given grep flip *”.

Of course, grep does indeed process regular expressions, but the
example above is not a demonstration of this ability.

It is misleading because in this example grep does not see any regular
expressions. The “*” is expanded by the shell, not by grep. The shell then
passes the list of filenames to the grep command.

This is an important point because newcomers to UNIX need to
understand the power of the shell. Some other operating system, such as
IBM OS/400, do not have facilities such as globbing built into the shell,
but instead pass the responsibility to each command program.

An example of a regular expression in grep is: (a) $ grep [pw]
filename
which lists all lines in the the file “filename” which contain either 'p' or
'w'.

Or you could have the same example, with shell globbing: (b) $ grep
[pw] file* Which would do the same thing, but for all files starting
with “file”. Say the directory holds three files named “file1”, “file2”, and
“file3”, and you type in example (b) : the shell expands the command
string into grep [pw] file1 file2 file3, forks a new process and
executes grep. So grep doesn't even “know” about the use of “file*”.

Of course, shell globbing can be used with many different commands, not
just grep. But beware, not all commands can process multiple files.

—Tim Lewis, timlewis_atlanta@yahoo.com

ARKEIA (fwd)

I read your article about ARKEIA and downloaded it. Since I don't use
tape drives, but hard disk for my back up, I have some problems that
should be noted. I set up everything by instructions, but it didn't work.
When backup starts it says: insert tape /mnt/backup (this is where my
backup disk is mounted). I say OK, but it's not satisfied. When I check all
of the setup files I noticed, that ARKEIA for tape type “file” automatically
asiges “manually mountable” flag. It can not be changed to “on-line”,
since it is set automatically. So I tried with /dev/hdb1 as tape location, but
without success. I think that a lot of readers of Linux Journal use disk's as
their back-up devices. I read all the documentation (more than 300
pages), but found only one or two paragraphs dedicated to file backups. I
would really appreciate it if you could try it and report it to the LJ for
readers to know about it. I found information in FAQ, but then I noticed
that I would need non shareware version to get it working (you need
support for lib management, which is not included). I contacted ARKEIA



support and they confirmed it. I told them that I find it strange limitation
for the shareware version and they agreed to think about it. Support was,
as you said, very quick and friendly. But facts are facts and I thing LJ
readers should know about it.

Have fun!

—Bostjan Vlaovic, bostjan.vlaovic@uni-mb.si

Re: ARKEIA (fwd)

Hi, Bostjan.

I don't have the docs for Arkeia handy, so I'll comment on this from
memory. Arkeia lets you define files of various sizes as “tapes”, which
you then define as elements of a drivepack. I haven't tried this recently
but I believe the version I used when I wrote the review would let me
back up to files. If so, can you define a directory structure on your backup
hard drive that lets you rotate the backups?

I'll experiment with this next time I get a chance & let you know what I
find. If you get that working, please let me know.

Then there's the old standby, tar and gzip. Most backup programs
compress each file individually so that they can then recover any one file
later at restore time. However, if you tar then gzip, gzip compress the
entire tar file as one file. This results in better compression, but may
require a temporary file later at restoration time. If you have the hard
drive space to do it, you might find that will do what you want.

—Charles Curley, ccurley@trib.com

Oh no . Not Another Microsoft.

Dear Linux journal Editor and Netscape team.

I would like to comment on the Letter Red Hat Phenomenon which was
published in the March 199 issue. I think that Mr. Reilly is right and that
you are not taking this matter seriously enough. Do we want another
Microsoft in face of RedHat Linux Monopoly.

At Netscape's website I saw the advertisement of their LDAP server .
http://home.netscape.com/download/noframes_102_21.html#specs
Netscape directory Server was advertised to be workable on Linux.

After downloading it and going to the installation page I found out to my
surprize that it works with RedHat Linux only. http://home.netscape.com/
eng/server/directory/4.1/installation.html

I tried to install it on SuSE Linux 5.3 and 6.0 and nope, didnt work.

This is scary.



I dread of the day when products would say .

Installation Requirements:
Solaris 2.6
Windows NT 5
Red Hat Linux x.x

PS:: RedHat Linux is just of the distributions but Linux is not just RedHat
Linux. I think that this matter is very serious. I really like Linux and its
openness. I love to see different packagers packaging Linux to their own
style: redhat, suse, slack, debian... etc but I would hate Linux to divide
and not be even portable among Linuxes. Please dont let that happen. 
I think that Linux journal is great and is one of the very few journals that I
really take time to read.

—Atif ghaffar, webmaster@artemedia.ch

letter to the editor

I would like to thank everyone who responded to my article, “Linux in a
Public High School.” I would like everyone to check out my latest
endeavor, the High School Linux User Group. The HS-LUG right now is
just a few web pages and a mailing list, but I would like people to have
somewhere to turn when they want to ask people about the uses of Free
Software in education. The HS-LUG is at http://hs-lug.tux.org.

—Andrew G. Feinberg, andrew@ultraviolet.org

Linux Journal

A few notes:

1) Ethernet frames range from 64 to 1518 bytes (1514 misses the CRC).

2) CSMA/CD's “capture effect” is largely a figment—in many years
consulting on thousands of networks I've yet to see it for more than some
milliseconds, primarily because systems do not have resources to send at
continuously full rate and a collision randomizes things quickly—yes, in
some testbeds, you can demonstrate one sender's dominance for a
while, but you have to work at getting the conditions right. Years ago
there were chip sets (e.g., from Seeq) that violated the inter-packet gap
spec, so indeed could capture a net—Cisco loved them—but the uproar
was so great that Seeq decided to back off (no pun).

3) Dropping frames indeed slows down TCP a lot, due to its inability to
distinguish error loss from router-congestion loss. However, this removes
traffic, rather than “...leads to more congestion”. The timeout and
retransmission times start at about a second and double up to about 32
seconds, whereupon transmission stops and higher layers are informed
of a network error. The attached Powerpoint graph of a real TCP situation,
where only errors caused loss, shows how significant delays (lower
traffic) occur after each loss—blank spaces between triangles and



upward drifts in bytes that could have been sent but weren't. As a
protocol, TCP still needs help in these respects.

4) “...the physical distance between the furthest nodes...”—“farthest”.
The editor should know that “further” refers to process (she furthered his
election) and “farther” refers to physical distance.

Again, good article.

—Dr. A. B. Cannara, cannara@ibm.net

In Defense of Red Hat and other subjects!

First let me introduce myself. I am H. Aurag, a Ph.D. student at Univ of
Montréal (math). There, I have been using for a while different Unix
machines, from dummy terminals to SGI and Sun Workstations.

On my HOME computer, I have Windows95/RedHat Linux installed since
1998. Needless to say what I think of Windows95. The only reason I am
keeping it is StarCraft, and some home software.

I think I might be the only real home user of Linux, in that I never use it
elsewhere (I have no choice or say there). To tell the truth, going from
Unix (Iris, Solaris) to Linux was not that hard for me as opposed to
someone who would go from a Win95 only environment. But the first
thing I noticed was that Linux is NOT Unix. It looks like unix, uses shells
and X etc... BUT it's not Unix. And the surprise was that I found it
superior, for the use I make of it (Math computations symbolic and
numerical plus TeX, web surfing, and soon Civilisation CTP), than Iris or
Solaris. I even found that my lousy 166MMX machine was faster than
some Ultra Sparc workstations: I actually did some benchmarks, and had
a big laugh.

This is the first thing I wanted to say to Unix users. You will feel
comfortable with Linux, but PLEASE don't think of it as a cheap Unix
clone. IT IS NOT. And I hope it will never be. Some distros might want to
let you think that, but I don't agree. My hope is that Linux evolves as a
unique and powerful OS (it is already) like it did by incorporating the best
ideas from anywhere even NT if need be!

Also, I think Red Hat has made a great job (I really don't know any other
distro, and I am not interested in knowing them). They gave me
something I could use and install easily, something that makes my
166MMX with 64Meg machine faster than an Ultra5 with 96Meg and
270Mhz RISC and ALL that uses Solaris. When I am saying faster, I am
talking about programs that make heavy symbolic computations and
heavy floating point operations!

So kudos for RedHat, for KDE, for GNOME (I like it most! Excellent job!),
for all those programmers that make nice programs and nice GUI's for



newbies, also to Debian, Slackware, Suse... even if I don't know them.
They all work hard I think!

Let's hope Linux keeps up with the good work and I hope I will be able to
have all those games browser plugins and I hope StarOffice will realease
a 5.1 version that uses less memory ;)

Finally, I would like to say to all those newbies out there, that a full
RedHat install takes 40 minutes or less, and a full Win95/98 install takes
2 hours! (If you read the manuals that came with both OS'es before
installing).

—H. Aurag, aurag@geocities.com

grep -c

In LJ April 1999 Take Command article on the grep command the writer
states that the -c option “outputs the number of times a word exists in a
file”. According to the man page the -c option “print a count of matching
lines”. This difference will be apparent if the word appears more than
once on the same line.

Thanks for a great magazine.

—David Massey, david.massey@ub.uio.no

Linux in Brunei

Just today, a member of the Brunei-Linux Users Group emailed me,
informing another fellow Bruneian had sent off an email to the Linux
Journal. 
It appears that dear Stefanus Du Toit [sdt@ultracool.net] is loneley,
thinking he is one of the few people who use Linux in Brunei.

Well, dear Stefanus !! Be lonely no more !!

Brunei-LUG needs people such as yourself who are willing to collaborate
with other users, and to advocate the use of Linux within Brunei.

We also deal in the distribution of GPL'd Linux Distributions, please
contact us for the latest distributions: Red Hat 5.9, 5.2, Debian 2.1,
Slackware 3.6, Slackware 4.0 beta etc etc.

Check us out at: http://irb.lh.umist.ac.uk

oh, and if you check up the Linux counter, you might notice something
interesting:
http://counter.li.org/bycountry/BN.html

Shows it's just the two of us :)



—Izam-Ryan Bahrin, izamryan@netscape.net

Minor correction and Letter to the Editor

Linux Journal is amazing, and issue #60 was no exception. However, I'd
like to point out a possible minor typing mistake on article “Linux 2.2 and
the Frame-Buffer Console”, page 14: under the “Frame Buffers” subtitle,
on the 2nd paragraph, the text says the frame buffer device files are “/
dev/fd*”. Would them be “/dev/fb*”?

On the same LJ issue, reading the Letters To The Editor section, the letter
“SSC's Distribution Choice” raised an interesting point for me: the fear of
having the Linux software market being directed to a specific Linux
distribution. Although we know that Linux is just the OS kernel, users
frequently see Linux as an entire package, from the installation program
to the applications that come with a distribution. So, there are of course
chances that a specific distribution be “preferred” by the general Linux
user. In my opinion, when a company says it will support a specific
commercial distribution, either that distribution has a special
characteristic (such as glibc), or there is contribution from the
distribution's company side on porting their products to Linux. I am not a
RedHat or Caldera fan, but I must admit these are examples of
companies that worked together with some commercial software
developers to port their products to Linux. Anyway, I believe that any
Linux software geared towards a specific distribution can be run on any
other distribution. What is needed is some standardization between
distributions, such as to include or not to include glibc, to use or not to
use .RPM packages, the filesystem layout, and so on.

Sorry for a so long letter.

—Celso Kopp Webber, webber@sj.univali.rct-sc.br

Certification

I totally disagree with P. Tobin Maginnis, article “Linux Certification for the
Software Professional”, April 99 Linux Journal. I am actually a little
disappointed in you for publishing it. I feel that some readers who don't
think too deeply about what is presented will be seduced into agreeing.

In the opening paragraph Maginnis says “ [certification] will be essential
in the future as Linux software is brought into corporate and government
environments.” This has not been true for any of Linux's competing o
perating systems. I believe that Linux's chances of penetrating these
markets will depend upon its performance and stability compared to its
competition.

Instead of giving us convincing logical arguments why we need to license
ourselves, he points to so many other fields that require a license as
ifthis is enough reason. Next, “the U.S. Department of Labor predicts .....
300,000 more ..... positions than programmers ..... and universities will
not be able to fill the demand .....” Here he's trying to scare you and at



the same time he's hoping you won't realize that such certification will
limit or reduce the number of programmers that qualify which only
aggravates the problem.

“..... a fundamental concern of corporate and government managers is
the cost of operations—and Linux dramatically reduces this cost.” And if
we will just accept certification then one of the benefits is “ ..... more job
options and ..... better pay”, thus higher operating costs.

“The consensus among managers is that certification leads to improved
employee service .....”. What group of managers of “certified”
programmers produced this “consensus”? Assertions like this with no
supporting evidence should be regarded as false.

“Licensing is a governmental action that seeks to safeguard the health,
safety, welfare .....”. I say BULL! When was the last time you saw anyone
go after a bad doctor, lawyer, engineer or accountant? When was the last
time you saw one doctor, lawyer, engineer or accountant testify against
one of his fellows? I am sorry, but, once licensing gets in place all the
license agency cares about is its own bureaucratic rules, forms and fees.

“..... the expected rapid growth of Linux will create a need for business
and government managers to have an additional metric in the selection
of new employees .....”. Why is a new metric required? STANDARDIZING
is not an answer! If you inspect every programmer ad in a major city
newspaper you will NOT find two alike. Nor will you find any two
employers with the same system setup or skill requirements. No licensing
bureau can improve the employee interview process. Only training your
managers in management and interview skills can do that.

Instead of presenting this technical forum with well organized facts and
logic, Mr. Maginnis has approached this subject in a typical liberal
fashion. He has used circular logic, scare tactics, contradiction, me-too
ism, and unsubstantiated assertions presented as if they were facts.

Microsoft figured out that the performance of their products could be
degraded by poor technical skills. This in turn, hurt the customers'
impressions of their products. The “Microsoft Certified Systems Engineer”
program was started to cure both of these problems and enhance their
sales. But, notice, this was done “within” the industry. And, it was done
their way and on their timetable with no government involvement or
interference.

I will never willingly support the involvement of any government agency
in the programming profession. If major players in Linux see problems
similar to Microsoft, maybe they should pursue a similar solution. If you
do some research, you will find that there have been previous attempts
like this one and all of them have failed. Anyone remember the DPMA's
Certified Data Processor?

—Richard McClendon Jr, rhmjr@flash.net



Your Article “Linux Certification” in April 1999 Linux Journal

Dear Dr. Maginnis:

As an MCSE/MCP+I/MCT, I couldn't disagree more with you regarding the
“need” for Linux certification.

Every certification program I've seen through the years (A+, CNE/CNA,
MCSE, etc.) starts out with the best intentions, but eventually loses its
way by getting caught up in the “business of certifying people”.

One problem is that no one way of becoming “certified” is the best. One
thing that “should” happen is that the companies doing the certifying
need to properly screen prospective students to properly guide people
with different levels of skill into the appropriate training tracks, &
recommend opportunities for gaining hands-on experience so that we
don't end up with “paper” MCSEs, CNEs, whatever. My experience as an
MCT working with ATECs as a contractor is that they don't do this of
course because that path of integrity could cost them money.

As an MCT it amazes me the expectations people have who get sold
these certification programs by some sales rep working for an ATEC. They
think that last week they were an interior decorator, they went a “Bill
Gates Wants You” career night, now they're in this certification program,
and in a couple of months with their freshly minted MCSE they'll get
$60,000/year starting salary without any experience. Especially
pernicious in my mind in this area are the so-called “boot camps” which
cram certification preparation into a couple of weeks.

Another issue is that just because a job candidate has an acronym
following their name doesn't mean they have the requisite skill level;
employers still have a responsibility to screen these people to avoid
hiring someone unqualified.

When I was a contractor managing a web development project last year,
I consistently told my company to require all new hires to agree to work
on 90 day contract-for-hire to prove themselves.

Another problem with cranking out a certification program is the logistics
of developing and deploying quality materials. I am phasing out the MCT
portion of my training business and focusing on custom training and IBT
development, actively turning down offers to teach at ATECs primarily
because of having to use Microsoft's Official Curriculum materials, which
are of “inconsistent” quality.

Based on my experiences, my advice to the Linux community regarding
certification is if you're going to do it, learn from the mistakes of your
predecessors and don't let the process turn into a “puppy farm.”

Sincerely,



—R Chance Brents, brentorg@home.com

Re: Your Article “Linux Certification” in April 1999 Linux Journal

Dear Mr. Brents,

Thank you for taking the time to comment on my article in the Linux
Journal. I must say that I am impressed by the depth of your comments,
your knowledge of the industry, and your true concern for quality
education. Allow me interleave my other comments with yours.

As an MCSE/MCP+I/MCT, I couldn't disagree more
with you regarding the “need” for Linux
certification. 

I'm not sure what you mean by “need,” but I see a need for employers to
be able to make some assessment of an applicant. This is a clear trend in
the industry and if Linux is to part of the main stream, then there must
some form of certification. On the other hand, there no “need” to exploit
people. There is no need to take some poor, ill prepared individual and
suck the last few dollars out of his or her savings account just so they
can have another reason to fail. I strongly disagree with this “need.” 

Every certification program I've seen through the
years (A+, CNE/CNA, MCSE, etc.) starts out with
the best intentions, but eventually loses its way by
getting caught up in the “business of certifying
people”. 

As one with an academic background, I do not have the experience in the
industry that you have had so I find your comments helpful. 

One problem is that no one way of becoming
“certified” is the best. 

I think you are saying that students seem to learn independent of how
they are taught and, if so, I agree. As teacher with 20 years of
experience, I can tell you that I do not (and my peers do not) have any
idea what happens inside the heads of students when they learn. But I do
know that when I specify a clear criterion of what “knowledge” is, then I
can construct tests that are a fair assessment of that knowledge. One of
my favorite student survey responses went something like this: “He gives
tests on what I know, not what I don't know.” 

One thing that “should” happen is that the
companies doing the certifying need to properly
screen prospective students to properly guide
people with different levels of skill into the
appropriate training tracks, & recommend
opportunities for gaining hands-on experience so
that we don't end up with “paper” MCSEs, CNEs,
whatever. My experience as an MCT working with
ATECs as a contractor is that they don't do this of



course because that path of integrity could cost
them money. 

As I understand the process, there are sales people at the bottom
continuously calling new prospects and trying to bring new recruits into
the training centers. Since the sales people live on commission, there is
no telling what has been said to these recruits by the time they sit down
for the first class. 
But at the same time, these training centers will only teach what they are
allowed to teach by the vendor. So it seems that you are saying that the
vendors are not providing the proper training materials? Or maybe you
are saying that the vendors are just throwing out a static product and not
receiving information on the type of student studying the material.

Tell me if I am wrong, but it seems to me that the more material the
vendor offers the more opportunity the trainer has to train. So the
trainers would welcome more “tracks” to teach.

As an MCT it amazes me the expectations people
have who get sold these certification programs by
some sales rep working for an ATEC. They think
that last week they were an interior decorator,
they went a “Bill Gates Wants You” career night,
now they're in this certification program, and in a
couple of months with their freshly minted MCSE
they'll get $60,000/year starting salary without
any experience. 

I know what you are describing, I have seen my fair share of students
with lots of dreams, low ability, and poor study habits, but I'm lost on
your overall point. I understand the sales people have “over sold” the
product and that the student comes in with a lot of “hope” but it's also
my impression that the six classes that the student must traverse are, in
fact, “significant.” I also understand that they do not have the proper
experience to back up what they have learned, but have they not
learned? On the resume, it may say “MCSE” but the employer will also
see that there is no experience to back it up. 

Especially pernicious in my mind in this area are
the so-called “boot camps” which cram
certification preparation into a couple of weeks. 

There is another, more general, name for this and it's called fraud. In my
mind, the vendor permits this by using test questions that are few in
number, “stale,” and overly narrow. 

Another issue is that just because a job candidate
has an acronym following their name doesn't
mean they have the requisite skill level;
employers still have a responsibility to screen
these people to avoid hiring someone unqualified. 



In other words, employers are not checking up on past projects and
recommendations from others? 

When I was a contractor managing a web
development project last year, I consistently told
my company to require all new hires to agree to
work on 90 day contract-for-hire to prove
themselves. 

That's even better. But the question is: with other things being equal, did
you pick a certificate holder over a non-certificate holder? 

Another problem with cranking out a certification
program is the logistics of developing and
deploying quality materials. I am phasing out the
MCT portion of my training business and focusing
on custom training and IBT development, actively
turning down offers to teach at ATECs primarily
because of having to use Microsoft's Official
Curriculum materials, which are of “inconsistent”
quality. 

Again, you seem to be saying the problem lies with the vendor by not
taking the time to properly understand the needs of the client. 

Based on my experiences, my advice to the Linux
community regarding certification is if you're
going to do it, learn from the mistakes of your
predecessors and don't let the process turn into a
“puppy farm.” 

Sounds great! So if you are serious about this why don't you help us. We
got training operations wanting material and we need a program to train-
the-trainers. I have no idea where the money is to pay you at this
moment, but I do know that we can develop material for you to train. In
this way you can use your experience to help create a solid program that
will have the right amount of “tracks” and will not suffer from the
excesses of sales people. 
Sincerely,

—Tobin Maginnis, ptm@sairinc.com

Internationalization

Recently I tried to fax a letter to your subscription department, and had
difficulty dialling the number given in the contact information at the front
of the journal. I dialled my international carrier, then the country code
(281), then the number. Then I thought to myself “Hmm, 281 is a strange
country code”, and it dawned on me - it's an area code ! The country
code is 1, of course. What else could it be ?

I think that the failure to list any of your contact numbers in international
format is embarrasing. A great deal of the Linux community is outside



the US, and indeed the origins of Linux itself is from outside the US. FYI,
the format for international listing is +country-area-number or (+country)
area-number. Given the theme of the March issue, don't you think you
should get with the program ? :-)

Cheers,

Brian Lowe, lowe@mds.rmit.edu.au

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

linux.com

Marjorie Richardson

Issue #62, June 1999

Recently, VA Research bought the linux.com domain and hired Trae McCombs
to be the site manager. I talked to Trae on April 1 to find out his plans. 

Recently, VA Research bought the linux.com domain and hired Trae McCombs
to be the site manager. I talked to Trae on April 1 to find out his plans. 

Margie: Tell us how you came to work on the linux.com site.

Trae: I am constantly amazed I have a job at VA Research. I never graduated
from college and I spent four years in the military. At one time, I even had a
climbing guide service and taught climbing. In March of 1995, I bought my first
computer. I ran Windows for about a year and discovered very quickly that I
wanted something else. Then I saw a screen shot of Linux—an old version of
Enlightenment called FVWM-XPM—and thought, “I wanna run that!” I actually
started running Linux because it was pretty!

Margie: Now that's a Linux story I haven't heard before.

Trae: I know! That was September of 1996, and getting started was pretty hard
for me. I think I was the first non-geek, non-technical person to use Linux.
Other users told me about RPM and configure->make->make install. I have no
programming skills—I couldn't code to save my life!

Margie: So what are you doing working for VA Research?

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/062/3365f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3365f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3365f1.large.jpg


Trae: That's an interesting question! They hired me for this position because of
what I did for the themes.org site. I talked to all the major window manager
authors about setting up an official theme site for their window manager. After
getting their approval, I started building this huge themes repository for the
Linux community. I couldn't have done it alone—I built a staff of about 18
volunteers who I managed. I think Larry Augustin was impressed with how I
managed that site, and that's why he hired me.

For linux.com, I'm using that same model. To develop the web site, I have 13
volunteer staff people, and I'll probably scale up to 20 or 25. It's so easy to get
people. This type of community involvement is what drives Linux and the Linux
kernel. Linus said, “Hey, I can't do everything on my own. Let's bring in other
people to do it.” I am using this same model to build linux.com.

Margie: Tell me about the site.

Trae: linux.com is going to have a broad scope. It is going to be the
quintessential Linux portal. When people hear about Linux, they will first go to
linux.com to look for information. The press will also be able to get various
tidbits of information they need. Phil Hughes is on our advisory board—we
can't go wrong!

On the home site, there is going to be a huge “What is Linux” button. All around
the button will be editorials, interviews, various other content and links to
different things. A button bar at the left side will be totally configurable. People
will be able to add links to their favorite places to the button bar. No one is
doing that—others are just including everyone else's news. To me, this takes
away from the experience of actually visiting other people's web sites.

The main feature is the “What is Linux” section that includes three areas:
corporate, new to Linux and new to computers. When a visitor clicks on one of
these areas, he will be walked through a “power point-esque”-type
presentation, as opposed to a text FAQ. It's not going to be a full multimedia
experience, but it will be very clear and concise, and at any time, a jump can be
made to another path or presentation. The layout the staff is working on is very
graphically pleasing, and more is yet to come.

Margie: Other sites do this same sort of thing. What exactly will make linux.com
unique?

Trae: We will have a chat section off the main page where people will be able to
get tech support from the community. No one does that now. Everyone else
offers e-mail or other types of support. We'll have a “Talk with Linux Users”
button where it will be easy to find. With just a click, they will be talking to other



Linux users and finding answers to their questions. The only reason I am
running Linux right now is because the Linux community is so open-armed and
willing to help. They spend hours on IRC—countless hours—helping people like
me. That's an invaluable resource.

Margie: Yes, it is. I'm always amazed how many people seem to have the time
to do that. So, the chat space is why people will come to this site?

Trae: People will come because we are linux.com!

Margie: Oh, because of your name!

Trae: Yes, the name has power, lure—it is the main reason all those other
people wanted this domain.

Margie: When do you expect linux.com to be up?

Trae: May 18—the start date for Red Hat's Linux Expo in North Carolina. I
wanted to launch it at a trade show, and Linux Expo seemed the right time.

Margie: I'll be at the Expo this year, so I'll see you for the announcement. Any
comments about linux.org?

Trae: My hope is that when we bring out this truly awesome site, linux.org will
say “Okay, that's great! Let's one-up them.” Then we'll say “Oh, wait a minute—
let's one-up what they've done!” Guess who wins this game of “one-up-
manship”? The users!

Margie: That is certainly a great attitude. Any closing thoughts?

Trae: As long as the Linux community wins, there will be no fracturing. We will
never have hard feelings towards any site. I want to see Linux win. I'd also like
to thank the staff and the rest of the Linux community who helped get us here.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

The Other Shoe

Doc Searls

Issue #62, June 1999

Every vendor wanted to be your only vendor—never mind that no vendor could
provide anything close to all the services you needed. 

Before the Internet, networks were private affairs. You bought them from
Novell or Microsoft or IBM. More accurately, you bought a set of network
services you could obtain only from certain companies. You got file and print
from Novell or Microsoft, messaging from Lotus, security from IBM and so on.
None of those services would cooperate with those same services from other
companies. That's not how “The System” worked. Every vendor wanted to be
your only vendor—never mind that no vendor could provide anything close to
all the services you needed. 

The Internet broke that system by taking several network services and putting
their protocols (i.e., HTTP for Web, SMTP for messaging, FTP for file transport
and others) in the public domain, running on top of the equally public network
protocols of TCP/IP. This gave us a high degree of interoperability for the first
time. The Internet still does not perform many services at all, or performs them
incompletely, so it did not put Novell and Microsoft out of business. The “Old
Guys” still perform very well, but the Internet gave their businesses a whole
new context—a public one. In a blink, their whole world changed, along with
everyone else's.

It's still changing. When the Internet finishes settling in, almost everything in
communications will depend on it, from embedded controllers to Palm Pilots to
the entire phone system. But perhaps the Internet was just the sound of one
shoe dropping—and the other shoe is Linux.

Linux seems to have the same calling: something free for everybody. The
Internet seems to be its natural companion. Already the vast majority of web
pages are served by Apache, running mostly on Linux systems. Are web

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


services an enterprise beachhead for Linux? Or are they just a vertical
application with little leverage?

Is there a big-time business model for any Linux vendor, besides attracting
expensive investment bets from Microsoft OEMs and partners looking for
alternatives? Are there other possibilities, all as radical and sensible as Linux
itself?

How hard is it to imagine Linux kernels as the most basic building blocks of
networked life? For Linux geeks, it goes without saying. For the rest of us it's a
big stretch, especially when Linux still looks like a Swiss watch delivered in 400
separate parts. But so was imagining a networked world that wasn't a medieval
mess of warring states dominated by the Empire of Microsoft, the Duchy of
Novell and the Blue Kingdom of IBM.

We're still less than halfway through the shift from personal to social
computing. Most households do not have PCs, and most that do are not
connected to the Net. According to design critic and user advocate Don
Norman, the two basic reasons for this are: computers are too complicated for
many people, and the Net still lacks a plug-and-run infrastructure. He lays out a
short-form prognosis in the title of his latest book, The Invisible Computer: Why
Good Products Can Fail, the Personal Computer Is So Complex, and Information
Appliances Are the Solution.

People are social. Telephony is equally social, because it lets people converse
over simple appliances (incomprehensible cell phones and PBXes
notwithstanding). Computing is social too, but only for a minority. There is still
no computing appliance that's as social as the telephone. Will Linux deliver it?

I suggest that the first social computing appliance—let's call it the first SC—will
cost less than $400, look friendlier than an iMac, get on the Internet with the
ease of a phone call, and produce Microsoft Office-compatible files for those
who want to use simple productivity applications.

Well, a prototype of that appliance can be built right now by slapping just about
any Linux, any desktop and any office suite onto a commodity PC too slow for
Windows 98, and a Windows newbie will probably know how to use it.

On the server side, the appliances are already here. The Cobalt Qube 2 is a
seven-inch blue cube that anyone with an IP address can put on the Web in
minutes and control easily over a browser. It runs Apache on Linux, but Cobalt
doesn't mention that fact anywhere other than its data sheets. Why? Because
it's an appliance. What's in it matters no more than what makes heat in a steam
iron. All that matters is that it works.



Right now, the companies moving in the appliance direction are what
economists call “fast followers.” Microsoft was once a fast follower of Apple,
which is why Windows is a MacOS knockoff. Now Corel, KDE, Star Division and
GNOME are fast followers of Microsoft, which is why their goods are not only
effective clones, but in some cases (most notably Corel's) significantly improve
on what they copy. Are they headed in the right direction? Not if they don't
follow the user even more obsessively than they follow Microsoft. Don Norman
says:

The successful family of information appliances will be
built around the people who use them and the tasks to
be performed. Products in the world of information
technology have suffered far too long under the
existing technology-centered designs... Today it is the
individual who must conform to the needs of
technology. It is time to make technology conform to
the needs of people.

Currently, Linux requires far more compliance than Windows or Macintosh. Can
that change? Only if some folks in the Linux community start to remember “the
rest of us” abandoned by Apple fifteen years ago. If they do, the other shoe is
sure to drop—big time. 

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

New Products

Ellen M. Dahl

Issue #62, June 1999

PCI-Fibre Channel RAID Controllers, Applix SHELF 1.3, HELIOS Products for
Linux and more.

PCI-Fibre Channel RAID Controllers

ICP vortex announced their GDT7519RN (one FC port) and GDT7529RN (two FC
ports) controllers which support RAID levels 0, 1, 4, 5 and 10. They feature 64-
bit design for very high data transfer rates, including a primary 64-bit PCI
interface clocked at 33 MHz, as well as an onboard 64-bit bus for maximum
throughput and a 64-bit RISC CPU for heavy I/O operations. The hardware XOR
engine is optimized for RAID 4/5 operations. ICP's 64-bit RAID Controllers can
be run in either 32-bit or 64-bit PCI slots. Drivers are available for many
operating systems including Linux. ICP is committed to supporting current and
upcoming versions of Linux with all of its current and upcoming RAID controller
lines. Please contact ICP vortex for pricing.

Contact: ICP vortex Corporation, 4857 West Van Buren Street, Phoenix, AZ
85043, Phone: 602-353-0303, Fax: 602-353-0051, E-mail: sales@icp-vortex.com,
URL: http://www.icp-vortex.com/.

Applix SHELF 1.3

Applix, Inc. launched its first Open Source initiative with SHELF, an embeddable,
full-featured, graphical programming language. Both Applixware and Applix
SHELF are available for all major distributions of Linux, as well as other

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


platforms. Applix SHELF is released under the GNU Library Public License as
defined by the Free Software Foundation. Version 1.3 and 1.1 are available for
free download at Applix's web site.

Contact: Applix, Inc., 112 Turnpike Road, Westboro, MA 01581, Phone:
508-870-0300, E-mail: info@applixware.org, URL: http://www.applixware.org/.

HELIOS Products for Linux

HELIOS Software GmbH announced the availability of its EtherShare 2.5,
EtherShare OPI 2.0, PDF Handshake and Print Preview products for the Linux
operating system on computers based on Pentium processors. HELIOS
products run on powerful and scalable servers from Apple Computer, Data
General, Compaq (Digital), HP, IBM, Intel (Pentium), Motorola, SGI and Sun,
providing reliable cross-platform support for Macintosh, DOS/Windows and
UNIX-based clients. Prices in Euros are available on the HELIOS web site.

Contact: HELIOS Software GmbH, Steinriede 3, D-30827 Garbsen, Germany,
Phone: +49-5131-709320, Fax: +49-5131-709325, E-mail: marketing@helios.de,
URL: http://www.helios.de/.

Enhydra

Lutris Technologies announced its new Open Source Java application server
development environment for Linux, suitable for building and deploying high-
grade web applications. Features include the Enhydra Application Framework, a
super-servlet run-time environment of common services for supporting N-tier
Enhydra applications; Enhydra Multiserver, a servlet-running environment with
graphical servlet management, monitoring and debugging; Enhydra XMLC, an
XML compiler designed to support designer and Java developer co-
development; Enhydra JDDI, a structured approach to using embedded Java for
dynamic HTML; and Enhydra DODS, a graphical tool for object-to-relational
database mapping. The product is free, with a FreeBSD-style license and Linux
RPM installation support.

Contact: Lutris Technologies, 1200 Pacific Avenue, Suite 200, Santa Cruz, CA
95060, Phone: 831-471-9753, Fax: 831-471-9754, E-mail: info@enhydra.org,
URL: http://www.enhydra.org/.



LDAP Proxy Server 2.0

Innosoft International, Inc. announced enhancements to its Innosoft LDAP
Proxy Server (ILPS) to provide automatic load balancing among multiple LDAP
servers and transparent failover for high-availability directory services. Innosoft
Directory Service (IDS) products are available for Red Hat Linux 5.1 on Intel.
Prices for the Innosoft LDAP Proxy Server begin at $4,800 US for up to 15
concurrent connections.

Contact: Innosoft International, Inc., 1050 Lakes Drive, West Covina, CA 91790,
Phone: 626-919-3600, Fax: 626-919-3614, E-mail: sales@innosoft.com, URL:
http://www.innosoft.com/.

DeveloperX2 2.1

NetBeans introduced DeveloperX2 2.1, one of the first full-featured, cross-
platform Integrated Development Environments (IDEs) to support and run on
Sun Microsystems, Inc.'s Java 2 platform. It enables software developers to
build sophisticated Java Foundation Classes (JFC) GUIs, compile and debug
applications on the platform of their choice. NetBeans also launched a
concurrent version, Developer 2.1, that supports Swing 1.1 and Java
Development Kit (JDK) 1.1. The license for all versions of Developer 2. x is $145
US for one to four users. Developer runs on all platforms that support JDK 1.1
and 1.2, including Linux.

Contact: NetBeans, Inc., Pod Hajkem 1, 180 00 Prague 8, Czech Republic, Phone:
+420-2-8300-7322, Fax: +420-2-8300-7399, E-mail: info@netbeans.com, URL:
http://www.netbeans.com/.

System Manager in a Box

PegaSoft announced the beta release of their new Linux product, System
Manager in a Box (SMiaB). This administration tool addresses the need for
experienced system administrators to diagnose installation, configuration and
run-time problems. Using artificial intelligence techniques, SMiaB performs
more than 2000 system checks and reports not only which files have problems,
but which systems are affected and why. SMiaB runs on all major flavors of
Linux. Scheduled for release in late spring 1999, SMiaB 1.0 will include
commercial editions geared especially to business. The beta is available for
download from the PegaSoft web site.

Contact: PegaSoft Canada, 2631 Honsberger Avenue, Jordan Station, ON L0R
1S0, Canada, E-mail: pegasoft@tiamet.vaxxine.com, URL: http://
www.vaxxine.com/pegasoft/.



ResQ!Net and ResQ!Net for IBM's Host-On-Demand

ResQNet.com, Inc. announced complete Linux support with its flagship
products, ResQ!Net and ResQ!Net for IBM's Host-On-Demand 99. The ResQ!Net
products provide graphical 3270/5250 host connectivity for Linux workstation
and server applications by instantly transforming old-fashioned mainframe and
IBM AS/400 screens into modern graphical interfaces with an easy-to-use
Windows look and feel. It is available as both a stand-alone application and as
an add-on to IBM's eNetwork Host-On-Demand. ResQ!Net is usable out of the
box with existing Linux applications. A free trial version may be requested via
the web site.

Contact: ResQNet.com, Inc.,130 Cedar Street, 5th Floor, New York, NY 10038,
Phone: 212-537-4800, Fax: 212-294-8822, URL: http://www.resqnet.com/.

SNAPIX 3.1.18

ADNT announced a new version of SNAPIX Special Edition for Linux (SEL), an
X11/Motif Interface and application generator. It provides an object-oriented,
event-driven language, allowing easy use of X11 and Motif libraries under UNIX.
SNAPIX SEL is downloadable for free from ADNT's web site, complete with
statically linked Motif libraries, so no royalties are due OSF. Commercial
versions of SNAPIX are available for Linux and other platforms for those users
with a Motif license.

Contact: ADNT, 4 rue Louis Massotte, 78530 Buc, France, Phone:
+33-0-1-3920-1010, Fax: +33-0-1-3956-5592, E-mail: info@adnt.fr, URL: http://
www.adnt.fr/.

Sophos Anti-Virus for Linux

Sophos Inc., a developer of network-oriented anti-virus software, announced
the release of Sophos Anti-Virus for six versions of UNIX, including Linux. The
UNIX implementation of Sophos Anti-Virus includes Sophos' unique SAVI API,
enabling third-party developers to integrate with the Sophos Anti-Virus
interface. An evaluation copy is free; visit the web site for downloading and
pricing of the full product.

Contact: Sophos Inc., 18 Commerce Way, Woburn, MA 01801, Phone: 888-
SOPHOS-9, 781-932-0222, Fax: 781-932-0251, E-mail: sales@sophos.com, URL:
http://www.sophos.com/.



WebFOCUS

Information Builders announced Linux support for the web-enabled enterprise
analysis and reporting solution, WebFOCUS. The WebFOCUS Managed
Reporting Environment lets users with little or no database experience create
sophisticated reports using objects that have been preconstructed by a
database administrator. The WebFOCUS Suite includes Report Broker, an
intelligent, Java-based engine that centralizes the scheduling and distribution of
reports over the Web, e-mail, printers and faxes. WebFOCUS is available to
channel partners through Information Builders' InfoElite Partners Program.
Pricing is to be determined at country of origin.

Contact: Information Builders, Two Penn Plaza, New York, NY 10121-2898,
Phone: 212-736-4433, Fax: 212-967-6406, E-mail: askinfo@ibi.com, URL: http://
www.ibi.com/.

PC ParaChute

UniTrends Software Corporation announced PC ParaChute, a complete crash
recovery product for Intel-based PCs. PC ParaChute backs up each PC on the
network to the central server through a TCP/IP connection. PC ParaChute can
create customized bootable diskettes either centrally or remotely for each PC. It
offers such technology as bit-level verification of the backup, software
compression (to reduce network traffic), DynaScan-backup verification weeks to
months later and a free-space optimizer. PC ParaChute requires Backup
Professional, also available for Linux. The cost of PC ParaChute is $35 US per
PC.

Contact: UniTrends Software Corporation, 1601 Oak Street, Suite 201, Myrtle
Beach, SC 29577, Phone: 800-648-2827, Fax: 843-626-5202, E-mail:
sales@unitrends.com, URL: http://www.unitrends.com/.

Web+ 4.0

TalentSoft announced its newest version of Web+, a development tool
dedicated to creating web-based client/server applications without writing CGI
programs. Web+ enables the creation of highly functional web pages that
integrate with databases, file systems, e-mail, Java applets, legacy applications
and other TCP/IP applications using socket technology. In addition to
supporting ODBC database connectivity, Web+ 4.0 now has built-in native API
connectivity with mySQL, miniSQL and PostgreSQL databases. Prices and
licensing begin at $100 US for the Developer's Edition with two concurrent
connections.



Contact: TalentSoft/Talent Information Management, LLC, 900 Nicollet Mall,
Suite 700, Minneapolis, MN 55402, Phone: 612-338-8900, Fax: 612-904-0010, E-
mail: info@talentsoft.com, URL: http://www.talentsoft.com/.

Helius Satellite Router

Helius, Inc. released the Helius Satellite Router, the first solution for small- to
medium-sized businesses and K-12 schools needing high-speed Internet access
and support from any location. The Satellite Router is an all-in-one box that
includes Virtual Technician and Helius Optimized software. The Helius Satellite
Router is a thin server network appliance that works with any local area
network, including Linux. System capabilities include interactive Internet, IP
Multicasting, e-mail, news, Web, AppleTalk and SMB servers, and caching and
proxy services. Installation, setup and support are easy and worry-free with
Helius Virtual Technician. Prices start at $2,499 US for up to 30 concurrent
users.

Contact: Helius, Inc., 240 West Center, Orem, UT 84057, Phone: 888-764-9020,
801-764-9020, Fax: 801-764-9022, E-mail: info@helius.com, URL: http://
www.helius.com/.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Best of Technical Support

Various

Issue #62, June 1999

Our experts answer your technical questions. 

Correction

I was reading the BTS column in the April issue, and noticed that for the “Wrong
Date” question from Bilal Iqbal, you edited my answer, changing the meaning.
In fact, you reversed the arguments to the ln command. The link should be

ln -sf /usr/share/zoneinfo/US/Pacific \
   /etc/localtime

and the -f option is most likely needed, since most systems already have a link
there. Also, I said “a link like this”, not “create this link”, since the reader
specified his timezone was GMT+5, so telling him to create a link setting his
timezone to GMT-8 isn't exactly what he would want to do. —Marc Merlin,
marc@merlins.org 

Zip Drive Affects Printer

I am using a Zip drive with Red Hat 5.2 and cannot use my printer because the
Zip drive is a parallel port version. The printer manager does not recognize the
printer is connected. I was able to use the printer before the Zip drive was
installed. Is it possible to use both the zip and the printer? I know I cannot use it
while my zip is mounted, but when I unmount the drive, would it be possible?
—Smileyq, smileyq0@mindspring.com

Rebuild the kernel, defining lp and zip support as modules. When you wish to
use the printer, unload the zip module (if loaded) and load the lp module, so
you can use the printer. When you wish to use the zip drive, unload the lp
module (if loaded) and load the zip module. That's it. —Paulo Wollny,
paulo@wollny.com.br

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


According to the Zip Drive mini HOWTO, question 7.1 (metalab.unc.edu/LDP/
HOWTO/mini/ZIP-Drive-7.html#ss7.1), it should be possible. You will need a
newer kernel (2.2.x) or you'll need to upgrade the ppa driver in your current
kernel source and recompile it. Since RH 5.2 isn't fully compatible with the 2.2.x
kernels, you may be better off recompiling your current kernel, and you can
find the ppa driver on David Campbell's page: http://www.torque.net/
~campbell/. —Marc Merlin, marc@merlins.org

Restoring DOS Data on Hard Drive

I just got Linux about a month ago (Red Hat 5.2) and have been experimenting
with it. Last night I accidentally ran mkfs.msdos on my Windows 98 FAT32
partition (/dev/hda1) thinking it was a command to mount an MS-DOS partition
under Linux, but of course, it nuked my drive, created an MS-DOS partition over
it, and I lost everything on my drive! I am writing to you in hopes that you know
of a way that I can salvage the information still on my drive. The mkfs.msdos
command erases only the FAT sector when it creates a new file system, right?
So, shouldn't all the information still be there? Thank you in advance for any
assistance. —Jon Verville, theverv@hotmail.com

That's a rough accident. The short answer is there's little you can do. Yes, the
information is still there, but the FAT tables tell the system where to look for
different pieces of a file, and if your file system is fragmented, it could be very
difficult to recover anything.

However, it would be worth trying a few recovery tools, such as Norton's Disk
Doctor if only to salvage some of your data before you reinstall Windows. You
may be able to save something from your disk if you touch —Chad Robinson,
chad.robinson@brt.com

Linux vs. IRIX

Normally, I am an IRIX user. Recently, I bought a dual-Pentium machine and
installed Linux SuSE 5.3. on it. I can't figure out if my second processor is
recognized; there seems to be no command like hinv in IRIX. Any suggestions?
Is there any document comparing IRIX and Linux commands? —Tobias Knaute,
tobias.knaute@charite.de

First, you have to make sure your kernel is compiled with SMP support; this is
not the default for most distributions. Then check your /proc/cpuinfo file which
contains the information for all CPUs found during boot time.

In order to take full advantage of your dual processor machine, I'd suggest you
use the 2.2.4 kernel version, which is the latest at this time. —Mario
Bittencourt, mneto@buriti.com

http://metalab.unc.edu/LDP/HOWTO/mini/ZIP-Drive-7.html#ss7.1
http://metalab.unc.edu/LDP/HOWTO/mini/ZIP-Drive-7.html#ss7.1
http://www.torque.net/~campbell
http://www.torque.net/~campbell


Removing xeyes

I installed xeyes in the KDE menu and while trying to remove it, it multiplied. Is
there any way to close it? It has no resize window and every method of
stopping or interrupting doesn't prevent it from returning on bootup. I have
searched the man pages for a key combination to kill them to no avail —
Edward Spadacene, espada@mbox.kyoto-inet.or.jp

You can close xeyes by clicking the right mouse button on it and choosing
“Close” from the pop-up menu that appears. Next time you start KDE, xeyes will
not be run. —Scott Maxwell, s-max@pacbell.net

Setting Up for Games

I am trying to set up my firewall so that my users can play on-line games. In
particular, I need to set up the following ports:

• An initial outbound TCP connection on port 47624
• Subsequent connections of inbound and outbound TCP and UDP ports

2300-2400

I am using IP masquerading. My firewall is an ipforwarding one, i.e., not a proxy
firewall. Any help you can give me would be greatly appreciated. —Neil Shanks,
neilshanks@home.com 

Unless you set up additional firewalling rules, there is no way to allow the
outbound packet on port 47624. Outbound UDP and TCP connections in the
2300-2400 range will work fine, and the masquerading machine will open a
reverse connection to gateway back inbound packets if they come back on the
same port. If they don't, you may have some luck with the ipautofw packet
forwarder which you can get at ftp://ftp.funet.fi/pub/Linux/PEOPLE/Linus/net-
source/firewall/ipautofw.tar.gz. You may also want to look at the ipmasq-
HOWTO and the list of applications that can be made to work through IP
masquerading, http://users.nais.com/~nevo/masq/. —Marc Merlin,
marc@merlins.org

Downloading with Netscape

Is there a default directory for downloads? I used the included Netscape
Communicator v4.07 to download the Corel WordPerfect Suite 8 for Linux (a
25MB download that took a couple hours) and the Quake 2 for Linux demo.
When I went looking for the files to install them, I couldn't find them anywhere.
The system did not ask for a specific location to place them, so I assumed there
was a default location. Am I wrong? —Robert Gray, noeman5@hotmail.com

http://users.nais.com/~nevo/masq


By default, Netscape tries to save the file in the user's home directory or the
last place (path) where you saved a file. To locate the files, use the command 
find:

find / -name "corel*.tgz" -print

—Mario Bittencourt, mneto@buriti.com 

More on Recovering Data

I had a hard disk crash and cannot mount root directory /dev/hda3. Is there any
way to perform a partial recovery of the data on the drive or split the root
partition (skipping the bad sectors) from a boot floppy? I only need the most
recent data in the mail directory that was not backed up. —Tom Voydanoff,
tvoydan@systechcorp.com

Boot using a rescue disk and try to repair the partition with the command 
fsck.ext2 /dev/hda3. After that completes, try to mount the partition yourself
and dig out the needed files. —Mario Bittencourt, mneto@buriti.com

Errors in Hard Drive

I have a Linux system that the hard drive died on. I have a tape backup of the
entire system. I did a minimum install of Red Hat to get the new drive running,
created the partitions / and /big and told taper to overwrite all files. It ran and
restored its files but had over 1200 errors. I viewed the log, which contained
statements about checksums not really errors. I was hoping to be all right, but
when I rebooted, the system just printed LI and stopped. Any help you could
offer would be greatly welcomed. —Jabe Pitts, Jabe.Pitts@cwix.com

Your system is probably fine—this is a boot loader issue. Boot loaders need to
know where the kernel is located, and by restoring your tape, you overwrote
the kernel, which moved it to a new position on the drive. Use a boot floppy to
boot your system and run lilo. This will reinstall the boot loader. (Note that you
may need to use —Chad Robinson, chad.robinson@brt.com

Installing guile

I got a message like the one below when I was trying to install guile. I usually
can figure out what needs to be installed when I get these failed dependency
messages, but this time I'm flummoxed. I have both glibc 2.0.7 and 2.1.x
installed. Is this just a peculiarity of the RPM? I've gotten this message with a
bunch of RPMs I've tried to install recently, not just this one.

[root@localhost new]# rpm -Uvh guile-1.3-4.i386.rpm
failed dependencies:
libdl.so.2(GLIBC_2.1) is needed by guile-1.3-4



libdl.so.2(GLIBC_2.0) is needed by guile-1.3-4
libm.so.6(GLIBC_2.1) is needed by guile-1.3-4
...

—Brady Hegberg, bradyh@bitstream.net 

Well, it turns out that glibc 2.1 isn't exactly binary compatible with glibc 2.0. It
looks like that's the problem you're having. Grab the .src.rpm file instead, and
do

rpm --rebuild guile-1.3-4.src.rpm.

The resulting .i386.rpm should work and will be in the /usr/src/redhat/RPMS/
i386/ directory. —Marc Merlin, marc@merlins.org 

Remounting Disks

I am a Linux newbie. Whenever I accidentally shut down my system without
halting, I get a message telling me to run disk utilities, and remount hdd. I was
wondering, what disk utilities? How do I run them? How do I remount disks? —
VoodooXpert, thaiguy@uswest.net

The utility to run is fsck which checks and repairs a Linux file system (whether it
is ext, ext2, etc.). In order to mount one yourself, type:

mount -t filesystem-type device mount-point

For example: 

mount -t ext2 /dev/hda3 /archive

Just make sure you already have the mount point created (use mkdir), and you
are using the correct file system type (ext, ext2, vfat, etc.).—Mario Bittencourt,
mneto@buriti.com Many on-line help resources are available on the SSC web
pages. Sunsite mirror sites, FAQs and HOWTOs can all be found at http://
www.linuxresources.com/. 

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

http://www.linuxresources.com
http://www.linuxresources.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Product Review: Pro-Lite Scrolling Message Signs

Walter Stoneburner

Issue #62, June 1999

A review of the Pro-Lite Tru-Color II PL-M2014R, an affordable multi-color LED
scrolling message board that is capable of being controlled by a standard
RS-232 serial port. 

• Manufacturer: Pro-Lite
• E-mail: info@prolite.com
• URL: http://www.pro-lite.com/
• Price: $150 US
• Author: Walt Stoneburner

The Pro-Lite Tru-Color II PL-M2014R is an affordable multi-color LED scrolling
message board that is capable of being controlled by a standard RS-232 serial
port. The sign is obtainable from Pro-Lite directly (http://www.pro-lite.com/),
but can also be purchased at various discount warehouses for approximately
$150. The serial cable and Windows software are sold separately. 

This article is not just a review; it can serve as a primer for Pro-Lite's PL-M2014R
with ROM release 5.24Q and 32K of memory with Trivia mode, basically your
standard sign. Until now, not much developer information has been available
to the public, meaning signs were usually configured with the included infrared
remote control to display static messages. For very little money, it is possible to
build your own serial cable and control the sign using Linux to display more
than static text.

The business and personal applications for a highly visible sign are almost
limitless: reporting days until software delivery, announcing traffic congestion,
providing the weather, showing the date and time, sending public messages,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


reporting system load, announcing new mail, showing who's logged in, warning
when disk space gets low, login information, announcing unexpected server
outages as a watchdog, etc.

Communicating with the sign is almost as simple as beaming text out the serial
port; however, a bit of text manipulation is necessary in order to get the sign to
respond and do advanced tasks. Linux handles the serial port communication,
so sending information to the sign appears as trivial as writing to a file.

Luckily, the majority of the work can be accomplished by simple scripts. All you
need is a basic understanding of the shell, AWK, PERL or Python, and you can
be running in almost no time. The first hurdle is to build a cable and configure
Linux to talk out the serial port.

Cable Construction

Figure 1. Female DB9 Adapter 

The first step is wiring an RJ12 to female DB9 adapter. It requires no tools, and
an adapter kit can be purchased at most computer supply stores for about $2
US. The only other thing you need is a length of RJ12 cable with male adapters
at each end. This means a standard telephone cord will do nicely. Your cable
will most likely have the standard colors black, red, green and yellow, in that
order.

Cables come in two flavors: straight-thru and reversed. You'll need to take the
RJ12 cable and put it end to end (like a loop) to find out which kind of adapter
you need to build.



Figure 2. RJ12 Adapter Diagram 

One of two things will be noticeable: either the wires will match black to black,
red to red and so on, or they will reverse their order showing black to yellow,
red to green and so on.

If the cable is a straight-through, where the colors match, wire your RJ12 to a
DB9 adapter using Pin 2 as green, Pin 3 as red and Pin 5 as yellow. If the cable
is reversed, then where the colors reverse sequence, wire your RJ12 to a DB9
adapter using Pin 2 as red, Pin 3 as green and Pin 5 as black.



Figure 3. RJ12 to DB9 Wiring 

Shove the unused adapter wires into the casing and snap the adapter shut.
Take care not to let the exposed ends touch anything metal inside the adapter
casing. You may want to clip the unused wires. Put an extension cable on your
serial port and connect the adapter wires directly to the extension cable in
order to test the wiring configuration before pushing the pins into the
connector.

When all is said and done, one end of the RJ12 goes into the side of the LED
sign, the other into the adapter you just made, and the adapter plugs into the
computer.

Configuring Linux to Talk to the Sign

My sign is plugged into COM1, also known as /dev/ttyS0. I've elected to use a
symbolic link to the sign, in the event I ever decide to change to another serial
port in the future. To make the link, as root type:

ln -s /dev/ttyS0 /dev/prolite

I tend to shy away from doing development as root. Putting security issues
aside for the moment, we can make the device world-writable by typing: 

chmod a+rw /dev/prolite



The sign communicates using No Parity, 8 Bits, 1 Stop Bit; no handshaking of
any kind (hardware or software) is used. Early versions of the sign work only at
300 baud, but they can be upgraded to 9600 baud. All signs I've encountered
had the 9600 capability right out of the box. The bottom line is that all signs are
capable of communication, and even at 300 baud you can outrun the sign. The
only drawback is that the sign's baud rate has to be set by the remote control,
according to the setup in the manual. This needs to be done only once. 

In theory, the sign requires a 15ms delay between each character sent to the
sign. I've found that Linux's device driver seems to work just fine without having
to do anything special in the software.

stty speed 9600 cs8 -parenb -cstopb cread \
   -clocal -crtscts -ignpar -echo nl1 cr3 < \
   /dev/prolite

Naturally, you can substitute any baud rate the sign will handle for the 9600.
This command will work when you aren't root because it is world-writable. 

The most important piece of information for communicating with the sign is
that each command sent to the sign must end with a carriage return/newline
pair. This is ctrl-M ctrl-J on the keyboard or 0x0C 0x0A in hexadecimal. C
programmers will recognize it as \r\n. If you want Linux to handle the end-of-
line sequence for you, type the command:

stty opost -ocrnl onlcr < /dev/prolite

When you send a newline, Linux will send both carriage return/newline
automatically. Text can now be listed or redirected to /dev/prolite from the
shell. If you want to send the carriage returns yourself, type: 

stty -opost -ocrnl -onlcr < /dev/prolite

Where the options are defined as: 

• opost: postprocess the output stream.
• -opost: do not postprocess the output stream.
• -ocrnl: do not convert carriage returns into newlines.
• -onlcr: do not translate each newline into a carriage return/newline pair.
• onlcr: translate each newline into a carriage return/newline pair.

The stty command allows for a shorthand representation of all the termios
structures that define the device characteristics. For 9600,N,8,1 with automatic
carriage returns, type on one line: 

stty 0:705:bd:0:3:1c:7f:15:4:0:1:0:11:13:1a:0:
12:f:17:16:0:0:73 < /dev/prolite



For 9600,N,8,1 with no automatic carriage returns, use the line: 
stty 0:700:bd:0:3:1c:7f:15:4:0:1:0:11:13:1a:0:
12:f:17:16:0:0:73 < /dev/prolite

Command Syntax

Only a minimal understanding is needed in order to operate the sign. Mastery
requires becoming familiar with the protocol and doing a little experimenting.

Multiple signs can be connected to a computer over the same serial port by
using a simple telephone-line-splitting Y-connector. Each sign has an assignable
logical address that allows you to send messages to particular signs. A logical
address is represented in hexadecimal as a number between 01 and FF.
Addresses may be shared enabling grouping; in this way, a message to ID01
goes to all signs with ID01.

Communication with the sign is always done with readable ASCII characters;
thus, an arbitrary ID of 2F would be designated with the digit “2” and the capital
letter “F”.

ID00 is reserved to mean “broadcast to all signs”. By default, a sign is
preconfigured as ID01; this can be changed with the remote control. If you are
addressing a single sign connected straight to the computer, it will respond
with its ID number after each successful command. Messages sent to ID00 do
not return a response, and neither does an individual sign when the line is
shared via the Y-connector.

All messages to the sign, except for those setting the date and time, are sent in
the following format followed by the carriage return/line feed: 
<IDxx>command, xx is 00 to FF. Any command longer than 1,023 bytes will be
ignored by the sign.

To set the date and time, no ID is needed. The format is <TYYMMDDwhhmmss>

where YY is the year, MM the month, DD the day, w the weekday (0=Sun,
1=Mon,...6=Sat), hh the hour, mm the minute and ss the seconds. This can be
accomplished with the shell very easily. Set the date/time of all signs with the
command:

ate "+<T%y%m%d%w%H%M%S>" te "+<T%y%m%d%w%H%M%S>" > /dev/prolite> /dev/prolite

The leading + sign tells the date command to build a string via substitution; see
your man pages for details. 

To signal a sign to start listening to responses, send it an empty command with
the format <IDxx>; e.g., type:



echo "<ID01>" > /dev/prolite

Pages

The most fundamental concept of the sign is the idea of a page. A page consists
of a message the sign is to display either now or some time in the future. Pages
may contain text, numerics, symbols, font attribute tags, color tags, graphic
tags and effect tags. There are 26 pages named, appropriately enough, A to Z.
Case does matter when identifying a page.

Any given page can hold approximately 1,012 bytes of information. I say
approximately because special tags (see sidebar) consume more than one byte,
which means less space. Also, using some trickery by omitting the page
directive completely and defaulting to page A squeezes out an additional two
bytes, which means more space.

The command to set a page is <Px>, where x is the page name. Any text after
this sequence is considered text for the sign. To set the message “Linux Rules”
on page A, type the following command:

echo "<ID01><PA>Linux Rules" > /dev/prolite

It is important to leave extra space at the end so the end of the message is
separated from the front of the message as it scrolls. 

To delete a page, use <DPx>, where x is the page name. For example, to delete
page B, type:

echo "<ID01><DPB>" > /dev/prolite

Displaying Pages

The sign is constantly displaying a page. If the default page A is scrolling by,
then when its content is changed it will immediately start displaying the new
message. Otherwise, we must tell the sign which page to run using the <RPx>

command, where x is the page to display. Normally, the sign can run only one
page at a time.

Once a page has been defined, it can be run. For example, to repeatedly display
our message, type:

echo "<ID01><RPA>" > /dev/prolite

Running an undefined page will result in displaying the sign's demo. 



Two points of interest for script writers:

1. It is possible to update the contents of a page not being displayed, then
switch to that page at a later time.

2. It is possible to update the currently displayed message. The only problem
is the display will be interrupted mid-message.

Sadly, you cannot ask the sign what the contents of a page are, what page it is
currently displaying, or when it has started or ended a display sequence. Thus,
techniques like double-buffering don't work for continuous messages. 

I have received one terse message from Pro-Lite that alluded to a future
version of the sign which is designed to address such needs explicitly for
computer users.

Timers

In order to display one or more messages at a time, the sign includes ten timers
named A to J. Each timer specifies a time and a series of 1 to 32 pages to
sequence through. You may repeat pages in a sequence. The time a sequence
is displayed consists of a weekday, an hour and a minute, any of which may be
wildcarded (*) to match “all”.

When the first timer is defined, the sign is put into “timer” mode and will display
that timer's messages immediately. Should two or more timers be defined, the
sign seems to wait one minute, then checks each timer to see if one triggered
based on the current time. If so, at the end of the displaying message, the new
timer's sequence goes into effect. If no rule matches, no change is made.

Note the sign checks the rules for the immediate time. It will not go back to try
to find a previous timer. So if you set a timer for 4:15PM and it is now 4:17PM,
you've missed the moment when the sign would change.

Should two or more timers both be valid for the current time, the sign
unpredictably selects one for display. This means you cannot set one timer to
display at 4:15 and another timer to display at 15 minutes past any hour. Both
rules would be triggered at 4:15 and it is a toss-up as to which message will be
displayed.

The timer command is defined as <Tx>dhhmmABC..., where x is the timer, d is 0
(Sunday) to 6 (Saturday) for the day, hh is a two-digit hour and mm is the
minute. “ABC...” is a list of 1 to 32 pages to display in the order specified. Note
that Page-A and Timer-A are two different, unrelated entities. A timer set for
“*****” will be triggered immediately.



The following sequence will display a series of messages at 8:00AM, noon,
1:00PM and 5:00PM:

$ cat > /dev/prolite
<ID01>
<ID01><PA>Good morning.
<ID01><PB>Have a nice lunch.
<ID01><PC>Get back to work.
<ID01><PD>Have a safe drive home.
<ID01><TA>*0800A
<ID01><TB>*1200B
<ID01><TC>*1300C
<ID01><TD>*1700D
ctrl-D

In order to display a whole sequences of pages, just list more page letters. For
instance, it is useful to make a scheme where you assign page letters to
different message content. For example, page A could be hourly
announcements, page R the runtime status of your machine, page M the
message of the day, page T the time and so on. To display several pages right
now (including repeats): 

$ cat > /dev/prolite
<ID01>
<ID01><TA>*****TAMARA
ctrl-D

Two interesting tidbits of information: 

• For some reason, the specific time of Sunday at midnight (00000 as a
timer value) does not seem to work consistently. I suspect it confuses this
value with unset timers.

• If a run-page command (<ID01><RPA>) is issued, the sign is taken out of
“timer” mode and displays the requested page. If you then issue the
command <ID01><RP*>, the sign will go back into “timer” mode,
displaying the last sequence of messages.

To delete a timer, use <DTx>, where x is the timer letter or * for all timers. For
example, to delete timer D type: 

echo "<ID01><DTx>" > /dev/prolite

Graphics

There are 26 graphic blocks that can be redefined and are commonly used for
graphics. Graphics are inserted into the text via the tag <Bx>, where x is a letter
from A to Z. For example, this command will display a mug and a wine glass:

echo "<ID01><PA><BW> Party Tonight <BZ>"
>\
   /dev/prolite



Altering the graphics requires the <Gx> command followed by a string of 126
characters made up of R (for red), Y (for yellow), G (for green) and B (for black or
unlit). A sequence of seven rows of eighteen LEDs is specified back to back on a
single command line. (See Figure 4.) 

Figure 4. A Graphics Block Specification 

I know at least one user who loads a font into a sequence of graphic blocks,
and in this way is able to display more characters than the sign technically
allows by default—very clever.

To delete a graphic block, restoring it to the default, use <DGx>, where x is a
letter A to Z; * is a wildcard indicating all are to be deleted.

Trivia

One additional feature of the sign is to display in sequence a trivia question,
your message, the answer to the question and your message again. It works its
way though a canned list of questions and then starts over. The sign can be
loaded with your own list, which does not have to be trivia. The list can be up to
16KB long, leaving 16KB for the pages. If no list is loaded (i.e., you deleted the
trivia), the full 32KB of the sign is available for page content. To make your own
list, do the following:

$ cat > /dev/prolite
<ID01>
<ID01><Q+>
<ID01>What operating system isn't a pig?
<ID01>Linux.
<ID01>What operating system is free?
<ID01>Linux.
<ID01><Q->
Control-D

To delete the trivia, just omit the lines between <Q+> and <Q->. If no messages
are loaded, trivia mode is turned off. If they are, trivia is turned on. 



Other Useful Commands and Tricks

To reset the sign, removing all timers and pages, use <D*> like this:

echo "<ID01><D*>" > /dev/prolite

Technically, there is no way to bring the sign to a halt. However, you can take
advantage of a quirk in the software to do the same thing. If you use the <FX>

tag in a message to control the speed of the sign, but don't supply a message,
the old text isn't cleared and the sign stops scrolling until it gets a new
message. 

Function Tags

Additional tags are shown in “Function Tabs”. European tags are available for
characters shown in Figure 5.

Figure 5. European Characters Available 

Uses for the Sign

It doesn't take much to make the sign useful. For example, scripts that send
commands to the sign can be executed every few minutes by editing your
crontab file (crontab -e) to include:

https://secure2.linuxjournal.com/ljarchive/LJ/062/2823s1.html


*/5 * * * * /usr/local/bin/sign 1> /dev/null \
2> /dev/null

Every five minutes, the system will call /usr/local/bin/sign. In this script, we can
place any number of tasks. To show our uptime, add these lines: 

#!/bin/bash
stty 0:705:bd:0:3:1c:7f:15:4:0:1:0:11:13:1a:0:12\
:f:17:16:0:0:73 < /dev/prolite
echo "<ID01><PU>'uptime' " > /dev/prolite
echo "<ID01><TA>*****U" > /dev/prolite

If root wants to see the last line of the log file scroll by, this command will
suffice: 

tail -f -n 1 /var/log/messages |
   awk '{ print "<ID01><PA>" $0 " "; }' >
   /dev/prolite &

This job sits in the background, getting lines from the end of the log as they
come in, prefixes a <ID01><PA> to it and sends it to the sign. The process then
goes to sleep until another log entry is made. The only reason to run as root is
to get access to the messages file. 

The sign can also act as a watchdog for our system by setting up a timer to go
off several minutes later. Ideally, the sign will get updated before the timer goes
off and the timer will again be set for some time in the future. In the event the
sign is not updated, the timer trips and an alternate alert message is displayed.

!/bin/bash
stty 0:705:bd:0:3:1c:7f:15:4:0:1:0:11:13:1a:0:12\
:f:17:16:0:0:73 < /dev/prolite
echo "<ID01><PU><FD>Server Up" > /dev/prolite
echo "<ID01><DTB>" > /dev/prolite
echo "<ID01><TA>00001U" > /dev/prolite
echo "<ID01><TD><FB><CC>Server Down" > \
   /dev/prolite
date "+<ID01><TB>*%H%MD" -date "7 min" > \
   /dev/prolite

To do this relies on some tricks. First, you cannot use a generic timer
(<TA>*****) for running standard messages because it conflicts with our
watchdog timer. Secondly, we cannot use timer <TA>00000 because it confuses
the sign. Thus, we have to use one minute after midnight on Sunday
(<TA>00001) in order to display our messages. When no timers are defined, the
first timer defined shows our page. 

Deleting timer B keeps us using timer A, which shows normal text. The sign
ignores requests to delete timers and pages that don't exist. Once page A is
defined and displaying, we define page B in the background and set up a time,
again using the clever date command to output it seven minutes from now.
Since our cron job is set to run this script every five minutes, the timer should
never go off unless something is wrong.



If Linux suffers a power failure, the cron daemon is killed, or the sign becomes
disconnected, it will display a warning message. The tag <FD> indicates the
message should instantly appear instead of scrolling, where <FB> indicates the
text should appear from the center—this will get your attention quickly.

More information about the protocol, cable and sign can be found at http://
wls.wwco.com/prolite/. This site also includes source code for various
applications that manipulate the sign.

Walt Stoneburner currently works as a software engineer for Downright
Software, LLC. In his spare time, he enjoys working with Linux, playing non-
computer games, reading and reviewing hardware and development software.
Feel free to contact him at wls@wwco.com or ICQ# 5368391.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

PPR: PostScript Printer Spooling

Olivier Tharan

Issue #62, June 1999

Mr. Tharan tells us how to use the PPR spooler for large networks. 

PPR is a PostScript printer spooler. It allows users to queue jobs for printing on
different PostScript printers. A single host can be the printing spooler for a
whole department or even a campus. It is well suited for managing a large
number of printers. 

Its main advantage over traditional printing servers, such as the System V LP or
the Berkeley LPD, is that PPR is able to use every feature of the PostScript
standard or the Adobe Document Structuring Conventions (DSC).

PPR Presentation

While many Linux users are pleased with the lpd printing daemon, I found it
was not as easy to use when it came to support four TCP/IP HP 5M PostScript
printers with more than 160 Linux, Macintosh and Windows computers on my
LAN (local area network).

PPR has been designed specifically for the purpose of operating PostScript
printers, accepting jobs from different systems such as UNIX (remote or local),
Windows with Samba or Macintosh with AppleTalk. PPR can talk to any
PostScript printer connected via a parallel port, a serial port, AppleTalk or TCP/
IP. It can even talk to a remote lpd server. Beginning with version 1.00 (the first
public release), PPR includes a GhostScript interface which enables it to print on
every non-PostScript printer supported by GhostScript. PPR is therefore very
well adapted to a heterogeneous environment.

PPR was designed with optimizing the use of PostScript and the Adobe DSC in
mind. As such, PPR is able to stop a job if the printer indicates that the job
contains a PostScript error (a queue listing will show “arrested” for that job).
Many PostScript interpreters are “cool” about the errors one can find in

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


PostScript files, but a program generating PostScript should be strict.
Remember that PostScript is a programming language. What if gcc let you
forget a semicolon or undeclared variables?

Moreover, for printers that support it, PPR is able to capture the error
messages sent by the printer and process them, sending a notice to the user or
the administrator if something went wrong. After a job has completed, the user
can be notified by various means: a mail message can be sent if he's a UNIX
user; a WinPopup if he used Samba, and so on, so that batch and queue
printing take their true meanings here.

If a user submits a non-PostScript file to PPR, it converts the file to PostScript
using a set of tools determined at installation time. For example, a .tex file will
be passed through LaTeX and dvips if these programs are available on the
system; a .gif file could be passed though the netpbm utilities, etc. Then, PPR
hands the converted file to the printer.

The queue handling is also well done. Any user can hold or cancel his job once
submitted; any administrator (any trusted user belonging to a certain access
list) can hold, release or cancel a job. Finally, a job can be moved from one
printer to another one if desired.

PPR has also support for PPD files (PostScript Printer Description files), which
are a convenient way to describe a printer's capability in just one file. PPR reads
a PPD file and determines automatically what type of paper the printer can
handle, what sort of bins it can use, and so on. PPD files can be downloaded
from Adobe's FTP site, or you can have generally have them on the drivers' disk
shipped with your printer.

Installation and Configuration

As of January 1999, the latest version of PPR is 1.40a4 and Linux is the primary
development system. Version 1.31 and later are stable enough to be used in a
production system. PPR uses very little resources other than the spool area, the
size of which depends on how many users print on the site. We used to run PPR
on a Pentium 66 Linux box which was also serving e-mail and Web. We have
moved to a more powerful machine only because we felt it was better to
separate the printing spool from the mail spool.

You can find the PPR FAQ at http:tarzan.trincoll.edu/printing/pprfaq.html and
all the documentation at http:mouse.trincoll.edu/ppr/docs/index.html. They are
written in an easy to understand style.

Installing PPR is easily done by following the steps described in “Installing and
Using PPR” which is a beginner's guide to running PPR. Compiling and installing



the program in place is not difficult. If you plan on using AppleTalk with PPR,
you will need AppleTalk support (either from NetaTalk or CAP, depending on
the platform), and a separate library called NATALI (if you use Netatalk),
shipped with PPR.

Next comes the configuration process. You may need to add a user and a
group to your system files for PPR to work correctly. An access list system
allows the administrator to delegate some powers; thus, he can assign some
trusted users the task of cleaning up the printers' queues from time to time,
without constantly requiring the administrator's help. There used to be some
UNIX groups to which one had to belong in order to have PPR privileges, but
this has been phased out in favour of the access list system.

Every printer on your network must be defined as well as the interface to use: 
tcpip for TCP/IP or atalk for AppleTalk. Then set some configuration variables,
such as selecting a PPD file suitable for the printer or even adding a comment
for the current printer.

You can even group printers and define groups. Jobs submitted to a group will
go to the first non-idle printer in the group. The printers can even be rotated:
jobs will be submitted in a round-robin fashion to each printer in a group.

Next, you can configure your system for different PPR access methods. With
Samba, for example, the program ppr2samba is included which generates a
simple file describing all the PPR-defined printers; include this file in your
smb.conf file.

To add support for your AppleTalk users, you will have to launch the papsrv

daemon which lists the printers on the AppleTalk network and handles jobs
sent to PPR. You can even throw away your lpd server and use lprsrv to serve
lpd jobs the same way papsrv does for AppleTalk.

PPR also allows for quota charging on a per-user basis, if you are concerned
about who is doing what or if you simply want to charge for every sheet of
paper coming out of your expensive printers.

Conclusion

PPR proves to be useful in a wide variety of configurations and should not be
difficult to adapt to your needs. We use it here on a daily basis with very little
maintenance: the main printing problems come from the printers themselves.

Many thanks to David Chappell, the author of PPR, who kindly reviewed this
article.



Resources

Olivier Tharan (olive@minet.net) was a student in a French telecommunications
high school and has been a system administrator for the students' campus
network for three years. He enjoys getting e-mail, so he has subscribed to a
dozen mailing lists which keep him occupied a good part of his short nights.
Aside from that, he translates some Linux HOWTOs into French in his spare
time. 

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/062/2855s1.html
mailto:olive@minet.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Linux in Schools

Rob Bellville

Issue #62, June 1999

How a K-12 school system is using Linux to supply a myriad of stable network
services to its students and staff. 

The Millbury Public Schools make up a small school district of just over 1800
students, located in the heart of Massachusetts. We provide state-of-the-art
computing services to our staff and students as a tool for learning and
research. Linux holds a distinguished position on our network and supplies
many of the network services required by our users. I hope this article will
persuade educators to think of Linux as a viable and even preferred alternative
to conventionally marketed products. 

Like most public school districts, our computer technology was exclusively
Macintosh-based and required a lot of effort and attention to keep it working
and usable. After some lobbying on my part, an endeavor was made to bring
our technology resources in line with what was in use in the “real world”. The
argument I used was not that it was a nightmare supporting a hundred
Macintoshes (it was), but that as an educational system we should be educating
our students on computer systems they would be more likely to find in the
college and business world. The fact that Apple Computer has been floundering
in the marketplace didn't hurt my argument.

Coinciding with our migration to an Intel platform was the availability of a
generous grant made by the Commonwealth of Massachusetts, specifically
earmarked toward networking the state's school systems. This allowed us to set
up a district-wide network and network services that rival those of many
businesses. Between the state's grant and our supportive school committee,
which approved our budget for new PCs, we had sufficient funds to do the job
right.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


The Details

Our network is arranged into 10Base-T workgroups tied into a central Ethernet
switch (collapsed backbone configuration). This switch is segmented into two
networks—administrative and student—providing our first level of network
security. The servers are connected via 100Base-T to the switch. This
arrangement allows us to share network resources without sharing bandwidth.
The central switch creates a smaller collision domain for each workgroup and
keeps traffic on the backbone to a minimum.

The client machines, which run Windows 95, are Pentium 166MHz clones with
32MB RAM and 2GB of disk space. We also have a number of Power
Macintoshes remaining in some of our labs. Our three servers consist of
Pentium Pro 200MHz with 128MB RAM and 4GB of SCSI disk space (soon to be
9+GB). One of these servers is a Windows NT machine used for applications
serving and the other two are Red Hat Linux-driven for everything else.

The two Linux servers are set up to supply file and Internet services to our
district. Our first box (http:www.millbury.k12.ma.us/) is set up as our WWW,
FTP, e-mail and DNS server and resides on the DMZ of our Sonic Interpol
firewall that is in turn connected to an ISDN router. This firewall/router
combination would also have been Linux except for the fact that the Sonic
Interpol offers content filtering. This helps us protect students from
inappropriate web sites on the Internet—an essential device when many
curious kids are around.

The second Linux box, located behind the firewall, was just recently “saved”
from being an NT machine and operates as a proxy/cache server, intranet
server, file server and has a number of other small duties. Luckily, NT was so
disappointing in performance and rather unstable that it was “born again” as a
Linux server. I have not regretted it.

Since both servers run Samba, I can map drives on the Win95 clients so that the
transfer of files to our web site is a breeze. File sharing is also handled this way.
Few users actually realize they are saving to a network drive, due to the speed
of the transfer.

As we still have a few remaining Macintoshes on our network, we could supply
AppleTalk services with Linux. We do not at this time, because these
Macintoshes are located in the lower grade levels and our youngest students
do not need most network services. It would be very easy to set up if it became
necessary. Many of our network services are platform independent.



The Results

Linux running the Squid proxy server (http:squid.nlanr.net/) has increased the
perceived bandwidth of our ISDN by a huge amount. It is also considerably
faster than when it was running NT and Netscape's Proxy Server.
Approximately 50-60% of all our web page requests are serviced by our in-
house proxy server. The increase in speed resulting in pages coming through
from the proxy at Ethernet speed rather than from the web site at Internet
speed has simply delighted my users. I've found that this service has made the
biggest difference on our network. I almost never hear a complaint about the
Internet being slow.

Samba (http:samba.anu.edu.au/samba/) is a terrific program, and once you get
used to setting up its configuration file, it is a charm to use. Setting up users in
Linux is more desirable for me than it is with NT. That, coupled with the lack of
additional costs for NT client licenses, makes Linux all the more attractive. This
cost savings is enough to help pay for staff training in beginning UNIX system
administration.

This brings me to another point. Nearly all schools operate under tight fiscal
constraints. Linux offers a way to develop technology without dipping too
deeply into the shallow school budget. Linux even recycles older hardware that
can be obtained through donations from local companies.

A side effect of all this Linux use is a number of students have actually become
interested in Linux and are setting up their own boxes at home. One of our
technology specialists (a former Macintosh user) has also fallen in love with the
command line after seeing me use the power of TELNET to add users, check my
e-mail and reconfigure something on the box.

The Future

Now that I have firmly entrenched Linux into our network, I plan on further
purges of Windows NT from our domain. We will be purchasing additional
servers for our workgroups and offices next year, and where application
servers are not required, Linux will be installed.

I also hope to recruit more students and introduce them to Linux. Enlisting a
new generation of Linux enthusiasts will only help drive Linux more firmly into
the future.

I am very grateful to the whole Linux community for their excellent software. A
big thank you is also sent to the Samba team for their labor in helping me rid
our computers of NT wherever possible. I would also like to applaud the Squid
developers for a top-notch product.



I would like to hear from anyone who has ideas on how to make Linux even
more attractive and useful in a school environment. I would also be happy to
share my experiences with anyone thinking of implementing Linux in their
school.

Help carry the Linux torch!

Rob Bellville is the Manager of Information Systems and Technology at the
Millbury Public Schools, Millbury, MA. Having successfully escaped from the
clutches of employment in the high-tech corporate world, he now enjoys
infiltrating technology into the educational system and making school more
fun, while getting most of the summers off! Rob can be reached via e-mail at
rob@millbury.k12.ma.us.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/062/2955s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Linux in an ERP World

Uche Ogbuji

Issue #62, June 1999

Mr. Ogbuji takes a look at enterprise resource planning and Linux's place in this
market. 

Enterprise Resource Planning (ERP) is the latest hot computer topic for
businesses. In the boardroom, it is often an even hotter topic than the Internet.
ERP describes a class of computer systems that attempts to manage all aspects
of an enterprise's operations. The basic structure of a typical ERP system is
shown in Figure 1. Note that this diagram is highly generalized; actual ERP
implementations differ wildly from vendor to vendor, and even from
installation to installation. As you can see from the diagram, ERP systems cover
an enormous scope, so they are very large software systems. They also tend to
be relatively monolithic, which is their main selling point. This is also the feature
that worries IS workers the most, and the feature that might make a Linux user
scratch her head. 

Figure 1. Typical ERP System

Frankly, ERP systems are typically sold with a pair of rose-colored glasses as an
accessory. A gentleman I spoke to, who works at an enormous international
beverage company, told me how the firm was sold an ERP system. The
salesmen for a leading ERP vendor took the CEO to a demo room, with
projection monitors showing simulated real-time charts of all of the company's
operations and finances. The salesmen told the executives that with this
product, they could have their fingertips on all of their company's data. The sale
was closed at that point. Now, years later and a scandalous sum over budget,
the company has little choice but to complete the installation. The IS staff is
completely disillusioned, but apparently not the executives, who are still waiting
for the magic cockpit to go on-line. This story is all too typical. ERP systems are
sold mostly at the executive level, and skeptical IS staff have little to say other
than the narrowest, technical implementation details. Furthermore, the process
of putting together an ERP system is such an enormous undertaking and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/062/3178f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3178f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3178f1.jpg


commitment that once the project is begun, there is no backing out without
disastrous financial and operational results.

Where does Linux fit into this rather alien world? Many Linux professionals will
find themselves caught up in an ERP installation at some point in their career,
since ERP systems are selling very well these days. But Linux makes the hapless
IS professional think of a more fundamental issue: what brought about the
whole ERP trend?

If you look at the history of computer software systems, you will notice that the
industry has not treated business very well. Competition among traditional
software vendors often involves wars to promote one data format or process
over another, with the reasoning that the success of proprietary data formats
accelerates the market share of proprietary applications. Many departments
bought computer systems to serve their particular operational needs. The
accounting department got machines and software that run the most effective
accounting software. The technical support department got systems that
manage incoming calls and problem resolution. The marketing department
often got Macintoshes for the graphics and layout software.

These individual packages served each department well enough, but it's a small
leap of business sense to deduce that the real gains in productivity would come
if the various departments could exchange data. Suppose quality assurance
could recognize a defect trend from the technical-support data and tighten
testing, or that the accounting department could verify purchase orders for raw
materials directly from manufacturing resource-planning systems which would
determine how much of a product to manufacture from marketing's sales
projections. However, when CEOs tried to implement such interactions, they
quickly ran into barriers of differing data formats, conflicting business rules and
physically disconnected systems. When they went to the vendors of
departmental systems for help, they typically didn't get far. Not only would it be
prohibitively expensive for each vendor to integrate with every other system
out there, but vendors imagined a competitive advantage to not doing so.

The furor over software standards is a recent phenomenon. Historically,
software standards have been very slow to emerge, motivated more by
temporary alliances for market share than by any real desire for
interoperability. The typical solution for interoperability was to buy entirely
from one vendor. Manufacturing companies have very specialized needs for
data exchange, so about a decade ago, a few smart companies started offering
manufacturers a suite of software that handled all aspects of their operations
with the assurance that information would be compatible between
departments. This was the birth of ERP. Since then, pioneers such as SAP and
Baan have grown prodigiously. From roots in manufacturing, they now sell to



almost every major industry. Other companies, sensing profit, have joined the
ranks of ERP vendors: PeopleSoft from the human resource world, Oracle from
the RDBMS world and JD Edwards from the financial systems and business
services world.

Now, most Linux users might see all of this as a huge over-correction:
organizations can't get departmental computers to collaborate, so they scrap
them all in favor of supersystems from single vendors that claim to do all of the
organization's data processing. Linux users are accustomed to standards and a
culture of software collaboration, but these trends are only now slowly
beginning to permeate the rest of the software industry.

The entire ERP trend does pose some tough questions for Linux advocates.
First of all, Linux's infiltration into enterprise has often come at the
departmental level, usually on departmental web servers. As more companies
adopt ERP systems and insist that internal and public web content feed into the
same enormous data stream, Linux may be harder to push in the workplace.
Also, for Linux to move from the web server to the application server
environment, it will often need to go head-to-head with an ERP module—a
battle for which Linux is politically ill-equipped.

Linux is just an operating system, and being UNIX-compatible should
theoretically not be far from running ERP systems, which usually have
commercial UNIX ports. Many hints and whispers have been reported on
Slashdot.org and elsewhere that various ERP vendors have development
versions of their server modules running on Linux. This is to be expected and
follows from the interest of so many DBMS vendors in Linux, but again, it
doesn't address an issue that is of as much importance to the Linux community
as the running platform. The culture of Linux, promoting distributed systems,
narrow scope for applications and standards-driven collaboration between
applications is under stealthy attack by the ERP approach. This is a very
important issue for Linux and open-systems advocates to address, because ERP
vendors are almost as wealthy and resourceful as Microsoft and just as anxious
to press their proprietary systems. It is in the interest of ERP vendors to
continue making it attractive for customers to buy all of their major information
systems from them. On the other hand, Linux users typically insist on buying or
downloading various software packages for various purposes and expecting
them to work well together. This conflict is most apparent in small-to-medium
businesses, which are the latest target of ERP vendors, but probably the most
likely to gain from the open and distributed systems approach. This so-called
“mid-market” is comprised of companies with $250 million to $500 million (US)
in annual revenues.



ERP vendors are pushing the myth that an enterprise needs a massive system
running on a tight cluster of machines for effective computing. The Internet is
but one recent development that proves distributed computing can be just as
productive as highly centralized computing. Departmental systems are
increasingly feasible in the age of Intranets, driven by such interoperability
standards as XML, CORBA and LDAP. Databases are now almost all reliably SQL,
a more recent phenomenon than one might imagine, and many domain areas
are developing forms and process standards for Electronic Data Interchange
(EDI) and other initiatives.

Make no mistake about it; Linux does have some definite short-comings for
enterprise computing. Some are only in perception, such as the 2GB file-size
limit. This, of course, applies only to 32-bit systems, such as Intel x86 platforms.
Major database vendors already know how to work around this limitation, but
Linux on Intel gets most of the press and many people in a decision making
capacity read pundit columns that complain of the supposed limitation. Even if
one sets miseducation aside, there also need to be more fundamental
processes, standards and drivers at the system and server-device level for
mirroring, redundancy and fail-over because an enterprise system must be
bullet proof, even by Linux's high standards. Intel's recent attention to Linux
provides a much-needed boost towards addressing such high-availability
issues.

DBMS vendors are also an important part of this process. Enterprise
computing, whether using single-source ERP or distributed information
systems, is all about data management. DBMS vendors can take leadership in
tweaking Linux into an “enterprise-class” operating system. Their researchers
can provide kernel patches, and they have the means and need to test
enormous transaction loads. As a true open-source advocate, I take a moment
to mention PostgreSQL, which is an open-source database. It still doesn't
support some features typical in enterprise-class systems, but its feature set is
tremendously robust, and a good argument against detractors who like to
consider open-source efforts as good only for hobbyists.

It is not the specific applications that Linux is lacking. We don't need a group to
get together and write an open-source resource planning application. What
Linux needs is the basic underpinnings: the infrastructure for such applications.
Its current momentum will surely envelop many vendors of vertical
applications, and such applications better served by the open-source model will
naturally tend in that direction. For instance, Linux needs attention from
developers of middleware and transaction-processing systems. These systems
have been standardized enough that they could reasonably support open-
source projects, and they are an integral part of the ERP equation. Another area
of importance is business rules.



One reason ERP installations are so precarious is they usually involve business-
process reengineering. ERP systems are complex enough as they are. If they
had to encompass all the company rules, policies and customs of every
business out there, their complexity would be practically infinite. Instead, each
ERP vendor has picked its own set of “best practices”, business rules which it
believes to be most effective and has enshrined these in its systems. If a
company wants to adopt an ERP system, it must reform its own business
processes to those of the ERP system. This usually involves a major effort in
paper shuffling, training and testing. Many CEOs, who feel their companies
have chaotic or non-existent business logic, seek to implement ERP just for the
reengineering process. In fact, this is often painful and resource-intensive.

Figure 2. Linux ERP System

If a company has good operational practices, it does not need to go through the
pain of remodeling itself in some other's image. Very often, a company's unique
approach to business is part of its competitive edge. This is a strong argument
for decentralized computing. If Linux is to use this argument, it will have to
provide a powerful system for managing business rules and incorporating them
into enterprise systems, as described in Figure 2. Note that once broken down
to the departmental level, Linux has the capability and competitiveness to host
all of the functions displayed. What is needed is the applications to fill in the
blanks. The enterprise-class databases are coming, but the data-exchange
management and executive information systems are a tougher proposition. For
vendors to prepare such systems for Linux, a solid framework for business
rules would probably have to be in place. This may sound easy enough to
implement, but in its purest form, it is one of the holy grails of computer
science. Research efforts ranging from graph theory to artificial intelligence
have sought good ways to enshrine arbitrary business rules (or even just
common-sense rules) into a computing framework. A system that could handle
enterprise-class computing would need the ability to analyze business objects
and apply various operations and constraints on them, as well as check pre-
conditions, post-conditions and invariants. This is an area where the great
problem-solving ability displayed by distributed developers such as Linux's can
make strides.

There is no doubt, however, that those of us in the Linux community face
tremendous financial interests in an entrenched industry if we decide to
compete. ERP is a very profitable business, in contrast to the plummeting
margins in shrink-wrap software. ERP systems are pushed by the companies
that write the software, consulting companies (including the consulting arms of
the big six accounting firms) and hardware/systems interests such as Hewlett-
Packard and IBM (see “An Unlikely Ally”). These same companies provide
reengineering and customization services. The frenzied marketplace ensures

https://secure2.linuxjournal.com/ljarchive/LJ/062/3178f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3178f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/062/3178f2.jpg


that consultants can often command $200 to $300 US per hour. The total cost
for ERP installations ranges from $100,000 for the smallest organizations with
the least reengineering effort required (often called “accelerated”
implementation) to as high as $500 million for large multinational firms. Note
that I mention customization with regard to the implementation effort. ERP
installations often demand as much effort in customization as is required to
write the information systems from scratch using off-the shelf DBMS,
middleware and design tools. ERP vendors encourage customers to customize
as little as possible, so as not to break everything when the APIs change, but
the reality is that every business has its quirks which necessitate customization.

Much of the recent effort in the Linux world has gone toward making Linux a
feasible desktop replacement. To observers of modern enterprise-wide
computing, this seems almost like misplaced energy. Intranets and other such
developments are slowly turning front ends into commodities, and the real
power is shifting from the client back to the server, although the server does
not have to be as monolithic as a mainframe. It is important for Linux
developers to turn their attention to the infrastructure which is increasingly
being demanded by enterprise-class computing and the executives who
demand it.

Many will argue it is not important for Linux to prove itself in this market, but if
you believe in the superiority of collaborative computing, you should recognize
that this ideal has the potential to be snuffed out by sheer misguided politics
and economics. If we want that server in the corner of the data center to ever
run anything besides Apache and Samba, we might want to channel some of
the boundless Linux energy to the enterprise.

Linux users face an interesting dilemma. A sector of the market that has
traditionally neither interested nor challenged us is beginning to shape trends
that could affect the future of computing, as much from a cultural as from a
technological view. To ensure the encouraging growth of Linux and the
associated improvements in business attitudes toward information technology,
developers would best address some of the needs of enterprise computing.
Commercial developers will certainly fill in the gaps. Then perhaps the promise
offered by the client/server movement, more flexible and decentralized
computing, will stand in a little less danger from huge, single-source ERP
systems.

An Unlikely Ally

https://secure2.linuxjournal.com/ljarchive/LJ/062/3178s1.html


Uche Ogbuji is co-founder of FourThought LLC (http://www.fourthought.com/),
a consulting firm specializing in custom software development for enterprise
applications, particularly Web-based integration platforms for small or
medium-sized businesses. He can be reached via e-mail at
uche@fourthought.com.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Book Review: LINUX Web Server Toolkit

Keith P. Solla

Issue #62, June 1999

A review of the LINUX Web Server Toolkit, a book that takes the reader
completely through the procedure of building a web server. 

• Author: Nicholas Wells
• Publishers: IDG Books Worldwide, Inc.
• URL: http://www.idgbooks.com/
• Price: $39.99 US
• ISBN: 0-7645-3167-0
• Reviewer: Keith P. de Solla

The LINUX Web Server Toolkit takes the reader completely through the
procedure of building a web server, from planning to disaster recovery. The
book comes with a CD containing Linux, Apache and a multitude of scripts and
programs. The copy I received came with Caldera OpenLinux Lite, but I have
seen bookstore copies with Red Hat Linux. This book provides a reasonable
overview of all issues involved with setting up a web server. It cannot, of course,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


cover topics in the same level of detail as books such as O'Reilly's Apache, but it
was not meant to do so. 

The author assumes the reader has access to a computer, but does not assume
detailed knowledge of Linux, web servers or the Internet. A novice should be
able to use the information in this book to set up a web server, and an
experienced user will also find information of value.

The 21 chapters are grouped into four parts: planning, installation,
maintenance and adding advanced features to your web server.

Part I: Planning Your Web Site

Chapters 1 and 2 discuss non-technical issues related to creating a web site for
a business and provide some background technical information for novices.
Chapter 3 sells Linux as the choice platform for a web server, followed by a
discussion of UNIX and Internet terminology in Chapter 4. Part I can be
skimmed (or skipped) by more advanced users.

Part II: Installing Your Web Server

Chapter 5 reviews hardware requirements, then takes the reader through the
steps of installing Linux. As I had no need to install an older version of Linux, I
did not install anything from the CD. The book is not a replacement for a
detailed installation guide, but does provide sufficient information so that a
novice can install the software. While sparse (nine pages), the section on
configuring XFree86 is quite well-written and should get most people through
the “fun” of creating an XF86Config file. However, it does not provide a
troubleshooting guide, so users with non-standard or “problem” hardware will
need to read the HOWTOs and Release Notes. One important item missing is a
warning that probing the video hardware may hang the computer. Novices
need to know this, especially after learning that driving the monitor at too high
a frequency can damage it. A brief discussion on network configuration follows.

Chapter 6 takes the user through installation and setup of both Apache and
Netscape FastTrack web servers. FastTrack is a commercial product not
included on the CD. Finally, Chapter 7 builds on the basic terminology of
Chapter 3 and looks at connecting to the Internet in more detail. Over 90 pages
cover everything from “what being connected means” to setting up DNS. The
emphasis is on the requirements and available options for setting up a
commercial web server.



Part III: Maintaining Your Site from Day to Day

Business issues such as advertising, search engines and gathering data are
discussed briefly in Chapter 8; readers setting up personal web sites can skip it.
Basic HTML is covered in Chapter 9, but not in any great depth. URLs are
provided for HTML authoring tools and other information, but enough detail
exists to allow a novice to create basic pages with tables, links and graphics.
This information is expanded in Chapter 10 to include web site scripts and
forms.

The rest of Part III (Chapters 11 to 14) covers configuration of the web server,
additional services and collecting statistics. Chapter 11 is specific to Apache and
provides a thorough overview, but the material is rather dated. (Apache v1.1.1
is included on the CD.) If you intend to set up a web server, I advise purchasing
the O'Reilly book on Apache and visiting these web sites: http://
www.apache.org/ and http:/www.apacheweek.com/.

As most people seem to be using Apache, I skipped Chapter 12 which describes
configuring Netscape's Fastrack server. Chapter 13 discusses the pros and cons
of web site statistics and provides URLs for web server statistical tools. Finally,
Chapter 14 covers additional services such as FTP, e-mail, gopher and WAIS.

Part IV: Adding Advanced Features

A very brief (eight page) introduction to Java and JavaScript is given in Chapter
15. Version 1.0.2 of the JDK is provided on the CD, but a list of related web sites
would have been helpful as well. Those interested in Java and/or JavaScript will
want to look for books on those specific topics. Almost as brief, but more
detailed, Chapter 16 discusses gateways (such as e-mail and database) and
provides lists of sites for gateway software. The novice will be able to learn
enough about gateways to understand what they do and whether one is
required. The next chapter gives a quick overview of application programming
interfaces (API) for Fastrack and Apache. APIs allow the user to extend the
capabilities of the server. More detailed documentation will be required by
those wishing to actually do this.

Chapter 18 concerns the all-important issue of security. It begins with a
summary of types of attacks, both generic and web-specific. A checklist of tests
to try and files to check gives the novice a good starting point for reviewing site
security. This is followed by a brief discussion on firewalls. The reader is then
pointed to an on-line firewall FAQ and http://www.yahoo.com to search for
more information.

The remaining chapters deal with issues of web maintenance, backup and
Linux package upgrading. Chapter 19 includes a list of HTML validation tools



and recommends HTML Analyzer for automated checking of your web site files.
The book finishes with a description of the CD-ROM files in Appendix A.

CD-ROM

The CD included with my copy of the book contained complete, but somewhat
dated, software. For example, it installs kernel v2.0.29, Apache v1.1.1 and v1.0.2
of the Java Development Kit. However, this book is hardly unique in this respect
—users will generally buy or download the latest releases elsewhere. The
important issue is the CD provides all the software necessary to install and set
up an Apache server on a Linux 2.0.x kernel. Some additional tools are included
on the CD including (much to my surprise) Xemacs. I would like to see Xemacs
included on more CD sets.

Conclusion

The book provides a reasonable overview of the issues and mechanics relating
to implementing a web server. The target audience is beginner to intermediate-
level users. If you are computer literate but a web novice, this book contains
sufficient detail to enable you to set up a web server. The depth is such that
more advanced people will also find the book useful, but it will not make
someone an expert on Apache or Java. Throughout the book, URLs are
provided so the reader can obtain more information, documentation or
software related to the specific topics being discussed. This is especially useful
given how quickly a printed book can become dated. If you're interested in
what is involved in setting up a commercial web site, this book is a very good
place to start.

Keith P. de Solla, P.Eng is an underemployed VLSI CAD Engineer, currently
masquerading as a Linux guy. When not doing computer stuff, he can be found
engaged in the politically incorrect (but really fun) activity of action pistol
shooting. He can be reached via e-mail at kdesolla@cyberus.ca.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/062/toc062.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Focus
	Features
	Reviews
	Forum
	Columns
	Departments
	Strictly On-line
	Focus: Standards
	Marjorie Richardson

	The Past and Future of Linux Standards
	Daniel Quinlan
	The Early Days
	Linux Today
	Common Implementation
	Filesystem Hierarchy Standard
	Linux Standard Base
	Linux and Future Standards

	The Distributions Take a Stand on Standards
	Norman M. Jacobowitz
	Red Hat Software, Donnie Barnes
	Caldera Systems, Ransom Love
	Pacific HiTech, TurboLinux, Scott Stone
	Slackware, Patrick Volkerding
	Debian, Nils Lohner
	Debian, Wichert Akkerman
	SuSE, Marc Torres
	Stampede Linux, David Haraburda
	Conclusion

	WordPerfect 8 for Linux
	Michael Scott Shappe
	Small Steps
	Getting What You Pay For
	Lingering Problems
	To Buy or Not to Buy

	Metro Link Motif Complete!
	Liam Greenwood

	TclPro v1.1
	Daniel Lazenby
	Install Experience
	Documentation and Other Resources
	Licensing
	Support
	Minimum Platform
	Conclusion

	The Linux Network
	Duane Hellums

	Developing Imaging Applications with XIElib
	Michael J. Hammel
	Summary

	MiniVend—the Electronic Shopping Cart
	Kaare Rasmussen
	Features
	Requirements for Electronic Commerce
	Why I Chose MiniVend
	Installation
	Installation Notes
	Configuration of Web Pages
	Administration
	Conclusion

	Introduction to Sybase, Part 1: Setting Up the Server
	Jay Sissom
	What is the Sybase SQL Server?
	Installing the Sybase SQL Server
	Configuring the Sybase Server
	Testing the Server
	Shutting Down the Servers
	Starting the Servers
	Conclusion

	CORBA Program Development, Part 2
	Mark J. Shacklette
	Jeff Illian
	Push Method
	Pull Method

	Interview: Stephen Wockner of the TAB of Queensland
	Bob Hepple

	Linux Clusters at NIST
	Wayne J. Salamon
	Alan Mink
	Hardware Description
	Software Description
	Communication Benchmarks
	Application Performance
	Conclusion

	Sending Mail via the Web
	Reuven M. Lerner
	Basic Mail Sending
	Mail::Sendmail
	Moving to the Web
	Creating the Form
	Preventing Spam
	Checking for Errors
	Competing with Hotmail
	Conclusion

	Focus on Software
	David A. Bandel

	Making Money in the Bazaar, Part 1
	Bernie Thompson
	Business Models
	The Research Economy
	The Service Economy
	The Customization Economy
	Funding New Companies
	Problems to be Solved
	The Search for Solutions

	IP Bandwidth Management
	Jamal Hadi Salim
	Primitive Bandwidth Management
	2.1.x Traffic
Control
	TC Features
	Example
	tc Setup
	Testing the Setup
	Final Word

	System Administration
	Martin Schulze
	How to Set Up RAID
	Swapping over RAID
	Setting Up RAID
	Root File System on RAID

	The awk Utility
	Louis J. Iacona
	General Overview
	awk Invocation
	The Language
	Conclusions

	Letters to the Editor
	Various
	I18N
	Table of Contents for Supplements
	Interactive LJ
	Error in March 1999 issue
	Kudos to Trident
	Window Manager Confusion Spells Doom
	Linux Certification
	Linux in Schools
	Byte Magazine
Syndrome

	More Letters to the Editor
	Network Administration with AWK
	Feature Page
	Puffins and H-P
	Error in April issue in “grep:searching for words” article
	ARKEIA (fwd)
	Re: ARKEIA (fwd)
	Oh no . Not Another Microsoft.
	letter to the editor
	Linux Journal
	In Defense of Red Hat and other subjects!
	grep -c
	Linux in Brunei
	Minor correction and Letter to the Editor
	Certification
	Your Article “Linux Certification” in April 1999 Linux Journal
	Re: Your Article “Linux Certification” in April 1999 Linux Journal
	Internationalization

	linux.com
	Marjorie Richardson

	The Other Shoe
	Doc Searls

	New Products
	Ellen M. Dahl
	Applix SHELF 1.3
	HELIOS Products for Linux
	Enhydra
	LDAP Proxy Server 2.0
	DeveloperX2 2.1
	System Manager in a Box
	ResQ!Net and ResQ!Net for IBM's Host-On-Demand
	SNAPIX 3.1.18
	Sophos Anti-Virus for Linux
	WebFOCUS
	PC ParaChute
	Web+ 4.0
	Helius Satellite Router

	Best of Technical Support
	Various
	Correction
	Zip Drive Affects Printer
	Restoring DOS Data on Hard Drive
	Linux vs. IRIX
	Removing xeyes
	Setting Up for Games
	Downloading with Netscape
	More on Recovering Data
	Errors in Hard Drive
	Installing guile
	Remounting Disks

	Product Review: Pro-Lite Scrolling Message Signs
	Walter Stoneburner
	Cable Construction
	Configuring Linux to Talk to the Sign
	Command Syntax
	Pages
	Displaying Pages
	Timers
	Graphics
	Trivia
	Other Useful Commands and Tricks
	Uses for the Sign

	PPR: PostScript Printer Spooling
	Olivier Tharan
	PPR Presentation
	Installation and Configuration
	Conclusion

	Linux in Schools
	Rob Bellville
	The Details
	The Results
	The Future

	Linux in an ERP World
	Uche Ogbuji

	Book Review: LINUX Web Server Toolkit
	Keith P. Solla
	Part I: Planning Your Web Site
	Part II: Installing Your Web Server
	Part III: Maintaining Your Site from Day to
Day
	Part IV: Adding Advanced Features
	CD-ROM
	Conclusion


